Gender affects calf venous compliance at rest and during baroreceptor unloading in humans

2004 ◽  
Vol 286 (3) ◽  
pp. H895-H901 ◽  
Author(s):  
Kevin D. Monahan ◽  
Chester A. Ray

Leg venous compliance is a determinant of peripheral venous pooling during orthostatic stress such that high venous compliance could contribute to reduced orthostatic tolerance. We tested the hypotheses that 1) calf venous compliance is reduced during baroreceptor unloading, and 2) calf venous compliance is greater in women than men. Twelve men (27 ± 2 yr) and 12 women (25 ± 2 yr) were studied in the supine posture. Calf venous compliance was determined by inflating a thigh venous collecting cuff to 60 mmHg for 8 min and then decreasing cuff pressure at a rate of 1 mmHg/s to 0 mmHg. The slope of the pressure-compliance relation (compliance = β1 + 2·β2·cuff pressure), which is the first derivative of the quadratic pressure-volume relation [(Δlimb volume) = β0 + β1·(cuff pressure) + β2·(cuff pressure)2] during the reduction in collecting cuff pressure, was used to assess venous compliance at baseline and during one-legged lower body negative pressure (LBNP; —50 mmHg). At baseline, calf venous compliance was 48% lower ( P < 0.001) in women than men and decreased in men (Δ—25 ± 8%; P < 0.05) but not women (Δ1 ± 11%) during LBNP. Rhythmic ischemic handgrip (Δ6 ± 9%) and cold pressor testing (Δ—9 ± 7%) did not alter calf venous compliance in a subgroup of men ( n = 6). These data indicate gender-dependent effects on calf venous compliance under conditions associated with low sympathetic outflow (i.e., rest) and high sympathetic outflow (i.e., LBNP). However, they cannot explain gender-associated differences in orthostatic tolerance.

2004 ◽  
Vol 97 (3) ◽  
pp. 925-929 ◽  
Author(s):  
J. P. Hernandez ◽  
W. D. Franke

Aging and chronic exercise training influence leg venous compliance. Venous compliance affects responses to an orthostatic stress; its effect on tolerance to maximal lower body negative pressure (LBNP) in the elderly is unknown. The purpose of this study was to determine the influence of age and fitness, a surrogate measure of exercise training, on calf venous compliance and tolerance to maximal LBNP in men and women. Forty participants, 10 young fit (YF; age = 22.6 ± 0.5 yr, peak oxygen uptake = 57.1 ± 2.0 ml·kg−1·min−1), 10 young unfit (YU; 23.1 ± 1.0 yr, 41.1 ± 2.0 ml·kg−1·min−1), 10 older fit (OF; 73.9 ± 2.0 yr, 39.0 ± 2.0 ml·kg−1·min−1), and 10 older unfit (OU; 70.9 ± 1.6 yr, 27.1 ± 2.0 ml·kg−1·min−1), underwent graded LBNP to presyncope or 4 min at −100 mmHg. By utilizing venous occlusion plethysmography, calf venous compliance was determined by using the first derivative of the pressure-volume relation during cuff pressure reduction. We found that the more fit groups had greater venous compliance than their unfit peers ( P < 0.05) as did the young groups compared with their older peers ( P < 0.05) such that OU < YU = OF < YF. LBNP tolerance did not differ between groups. In conclusion, these data suggest that aging reduces, and chronic exercise increases, venous compliance. However, these data do not support a significant influence of venous compliance on LBNP tolerance.


1990 ◽  
Vol 68 (3) ◽  
pp. 1004-1009 ◽  
Author(s):  
M. J. Joyner ◽  
J. T. Shepherd ◽  
D. R. Seals

The purpose of this study was to determine whether prolonged unloading of cardiopulmonary baroreceptors with lower body negative pressure (LBNP) causes constant increases in sympathetic outflow to skeletal muscles. Eight healthy subjects underwent a 20-min control period followed by 20 min of 15-mmHg LBNP. This pressure was selected because it did not cause any significant change in mean arterial blood pressure (sphygmomanometry) or heart rate, suggesting that the cardiopulmonary baroreceptors were selectively unloaded and the activity of the arterial baroreceptors was unchanged. Muscle sympathetic nerve activity in the peroneal nerve (MSNA, microneurography) increased from an average of 21.8 +/- 1.7 bursts/min over the last 5 min of control to 29.0 +/- 2.9 bursts/min during the 1st min of LBNP (P less than 0.05 LBNP vs. control). The increase in MSNA observed during the 1st min was sustained throughout LBNP. Forelimb blood flow (plethysmography) decreased abruptly at the onset of the LBNP from a control value of 4.3 +/- 0.5 ml.min-1.100 ml-1 to 2.5 +/- 0.2 at the 1st min; the flow then increased and remained significantly above this value, but below the control value, throughout LBNP. Similar blood flow findings were obtained in additional studies, when the hand circulation was excluded during the flow measurements. Forearm skin blood flow (laser Doppler) also decreased abruptly at the onset of LBNP and was followed by partial recovery, but these changes were too small to account for all the increases in limb blood flow over the course of LBNP.(ABSTRACT TRUNCATED AT 250 WORDS)


2005 ◽  
Vol 25 (1) ◽  
pp. 136-143 ◽  
Author(s):  
Timothy D Wilson ◽  
J Kevin Shoemaker ◽  
R Kozak ◽  
T-Y Lee ◽  
Adrian W Gelb

Adrenergic nerves innervate the human cerebrovasculature, yet the functional role of neurogenic influences on cerebral hemodynamics remains speculative. In the current study, regional cerebrovascular responses to sympathoexcitatory reflexes were evaluated. In eight volunteers, contrast-enhanced computed tomography was performed at baseline, –40 mmHg lower body negative pressure (LBNP), and a cold pressor test (CPT). Cerebral blood volume (CBV), mean transit time (MTT), and cerebral blood flow (CBF) were evaluated in cortical gray matter (GM), white matter (WM), and basal ganglia/thalamus (BGT) regions. Lower body negative pressure resulted in tachycardia and decreased central venous pressure while mean arterial pressure was maintained. Cold pressor test resulted in increased mean arterial pressure concomitant with tachycardia but no change in central venous pressure. Neither reflex altered end-tidal carbon dioxide. Cerebral blood volume was reduced in GM during both LBNP and CPT ( P<0.05) but was unchanged in WM and BGT. Mean transit time was reduced in WM and GM during CPT ( P<0.05). Cerebral blood flow was only modestly affected with either reflex ( P<0.07). The combined reductions in GM CBV (˜ –25%) and MTT, both with and without any change in central venous pressure, with small CBF changes (˜ –11%), suggest that active venoconstriction contributed to the volume changes. These data demonstrate that CBV is reduced during engagement of sympathoexcitatory reflexes and that these cerebrovascular changes are heterogeneously distributed.


2004 ◽  
Vol 96 (3) ◽  
pp. 840-847 ◽  
Author(s):  
M. W. P. Bleeker ◽  
P. C. E. De Groot ◽  
J. A. Pawelczyk ◽  
M. T. E. Hopman ◽  
B. D. Levine

Venous function may be altered by bed rest deconditioning. Yet the contribution of altered venous compliance to the orthostatic intolerance observed after bed rest is uncertain. The purpose of this study was to assess the effect of 18 days of bed rest on leg and arm (respectively large and small change in gravitational gradients and use patterns) venous properties. We hypothesized that the magnitude of these venous changes would be related to orthostatic intolerance. Eleven healthy subjects (10 men, 1 woman) participated in the study. Before (pre) and after (post) 18 days of 6° head-down tilt bed rest, strain gauge venous occlusion plethysmography was used to assess limb venous vascular characteristics. Leg venous compliance was significantly decreased after bed rest (pre: 0.048 ± 0.007 ml·100 ml-1·mmHg-1, post: 0.033 ± 0.007 ml·100 ml-1·mmHg-1; P < 0.01), whereas arm compliance did not change. Leg venous flow resistance increased significantly after bed rest (pre: 1.73 ± 1.08 mmHg·ml-1·100 ml·min, post: 3.10 ± 1.00 mmHg·ml-1·100 ml·min; P < 0.05). Maximal lower body negative pressure tolerance, which was expressed as cumulative stress index (pressure·time), decreased in all subjects after bed rest (pre: 932 mmHg·min, post: 747 mmHg·min). The decrease in orthostatic tolerance was not related to changes in leg venous compliance. In conclusion, this study demonstrates that after bed rest, leg venous compliance is reduced and leg venous outflow resistance is enhanced. However, these changes are not related to measures of orthostatic tolerance; therefore, alterations in venous compliance do not to play a major role in orthostatic intolerance after 18 days of head-down tilt bed rest.


2008 ◽  
Vol 295 (4) ◽  
pp. R1181-R1187 ◽  
Author(s):  
Deborah A. Salzer ◽  
Philip J. Medeiros ◽  
Rosemary Craen ◽  
J. Kevin Shoemaker

The purpose of this investigation was to assess the interactive influence of sympathetic activation and supplemental nitric oxide (NO) on brachial artery distensibility vs. its diameter. It was hypothesized that 1) sympathetic activation and NO competitively impact muscular conduit artery (brachial artery) mechanics, and 2) neurogenic constrictor input affects conduit vessel stiffness independently of outright changes in conduit vessel diastolic diameter. Lower body negative pressure (LBNP) and a cold pressor stress (CPT) were used to study the changes in conduit vessel mechanics when the increased sympathetic outflow occurred with and without changes in heart rate (LBNP −40 vs. −15 mmHg) and blood pressure (CPT vs. LBNP). These maneuvers were performed in the absence and presence of nitroglycerin. Neither LBNP nor CPT altered brachial artery diastolic diameter; however, distensibility was reduced by 25 to 54% in each reflex (all P < 0.05). This impact of sympathetic activation on brachial artery distensibility was not altered by nitroglycerin supplementation (21–54%; P < 0.05), although baseline diameter was increased by the exogenous NO ( P < 0.05). The results indicate that sympathetic excitation can reduce the distensibility of the brachial artery independently of concurrent changes in diastolic diameter, heart rate, and blood pressure. However, exogenous NO did not minimize or reverse brachial stiffening during sympathetic activation. Therefore, sympathetic outflow appears to impact the stiffness of this conduit vessel rather than its diastolic diameter or, by inference, its local resistance to flow.


1997 ◽  
Vol 22 (4) ◽  
pp. 351-367
Author(s):  
Tania L. Culham ◽  
Gabrielle K. Savard

Several studies indicate that carotid baroreflex responsiveness is a good predictor of orthostatic tolerance. Two groups of healthy women with high (HI) and low (LO) carotid baroreflex responsiveness were studied (a) to determine any differences in the level of orthostatic tolerance of the two groups, and (b) to study the hemodynamic strategies used by HI and LO responders to regulate arterial pressure during the orthostatic challenge of lower body negative pressure (LBNP). Orthostatic tolerance was similar between the two groups, whereas the hemodynamic strategies recruited to maintain blood pressure at −40 mmHg LBNP differed: HI responders exhibited greater LBNP-induced decreases in stroke volume and cardiac output, as well as a greater increase in peripheral resistance compared to LO responders (p < .05). In addition, a significant increase in plasma renin activity during LBNP was found in the HI responders only. No significant between-group differences were found in arterial and cardiopulmonary control of vascular resistance or arterial haroreflex control of heart rate during LBNP. Key words: arterial pressure, carotid baroreceptor, lower body negative pressure, orthostatic tolerance, stroke volume


2007 ◽  
Vol 103 (6) ◽  
pp. 1964-1972 ◽  
Author(s):  
Donald E. Watenpaugh ◽  
Deborah D. O'Leary ◽  
Suzanne M. Schneider ◽  
Stuart M. C. Lee ◽  
Brandon R. Macias ◽  
...  

Orthostatic intolerance follows actual weightlessness and weightlessness simulated by bed rest. Orthostasis immediately after acute exercise imposes greater cardiovascular stress than orthostasis without prior exercise. We hypothesized that 5 min/day of simulated orthostasis [supine lower body negative pressure (LBNP)] immediately following LBNP exercise maintains orthostatic tolerance during bed rest. Identical twins (14 women, 16 men) underwent 30 days of 6° head-down tilt bed rest. One of each pair was randomly selected as a control, and their sibling performed 40 min/day of treadmill exercise while supine in 53 mmHg (SD 4) [7.05 kPa (SD 0.50)] LBNP. LBNP continued for 5 min after exercise stopped. Head-up tilt at 60° plus graded LBNP assessed orthostatic tolerance before and after bed rest. Hemodynamic measurements accompanied these tests. Bed rest decreased orthostatic tolerance time to a greater extent in control [34% (SD 10)] than in countermeasure subjects [13% (SD 20); P < 0.004]. Controls exhibited cardiac stroke volume reduction and relative cardioacceleration typically seen after bed rest, yet no such changes occurred in the countermeasure group. These findings demonstrate that 40 min/day of supine LBNP treadmill exercise followed immediately by 5 min of resting LBNP attenuates, but does not fully prevent, the orthostatic intolerance associated with 30 days of bed rest. We speculate that longer postexercise LBNP may improve results. Together with our earlier related studies, these ground-based results support spaceflight evaluation of postexercise orthostatic stress as a time-efficient countermeasure against postflight orthostatic intolerance.


2007 ◽  
Vol 31 (1) ◽  
pp. 76-81 ◽  
Author(s):  
Ben T. A. Esch ◽  
Jessica M. Scott ◽  
Darren E. R. Warburton

Lower body negative pressure (LBNP) is an established and important technique used to physiologically stress the human body, particularly the cardiovascular system. LBNP is most often used to simulate gravitational stress, but it has also been used to simulate hemorrhage, alter preload, and manipulate baroreceptors. During experimentation, the consequences of LBNP and the reflex increases in heart rate and blood pressure can be manipulated and observed in a well-controlled manner, thus making LBNP an important research tool. Numerous laboratories have developed LBNP devices for use in research settings, and a few devices are commercially available. However, it is often difficult for new users to find adequately described design plans. Furthermore, many available plans require sophisticated and expensive materials and/or technical support. Therefore, we have created an affordable design plan for a LBNP chamber. The purpose of this article was to share our design template with others. In particular, we hope that this information will be of use in academic and research settings. Our pressure chamber has been stress tested to 100 mmHg below atmospheric pressure and has been used successfully to test orthostatic tolerance and physiological responses to −50 mmHg.


Sign in / Sign up

Export Citation Format

Share Document