Vasomotor control in mice overexpressing human endothelial nitric oxide synthase

2007 ◽  
Vol 293 (2) ◽  
pp. H1144-H1153 ◽  
Author(s):  
Elza D. van Deel ◽  
Daphne Merkus ◽  
Rien van Haperen ◽  
Monique C. de Waard ◽  
Rini de Crom ◽  
...  

Nitric oxide (NO) plays a key role in regulating vascular tone. Mice overexpressing endothelial NO synthase [eNOS-transgenic (Tg)] have a 20% lower systemic vascular resistance (SVR) than wild-type (WT) mice. However, because eNOS enzyme activity is 10 times higher in tissue homogenates from eNOS-Tg mice, this in vivo effect is relatively small. We hypothesized that the effect of eNOS overexpression is attenuated by alterations in NO signaling and/or altered contribution of other vasoregulatory pathways. In isoflurane-anesthetized open-chest mice, eNOS inhibition produced a significantly greater increase in SVR in eNOS-Tg mice compared with WT mice, consistent with increased NO synthesis. Vasodilation to sodium nitroprusside (SNP) was reduced, whereas the vasodilator responses to phosphodiesterase-5 blockade and 8-bromo-cGMP (8-Br-cGMP) were maintained in eNOS-Tg compared with WT mice, indicating blunted responsiveness of guanylyl cyclase to NO, which was supported by reduced guanylyl cyclase activity. There was no evidence of eNOS uncoupling, because scavenging of reactive oxygen species (ROS) produced even less vasodilation in eNOS-Tg mice, whereas after eNOS inhibition the vasodilator response to ROS scavenging was similar in WT and eNOS-Tg mice. Interestingly, inhibition of other modulators of vascular tone [including cyclooxygenase, cytochrome P-450 2C9, endothelin, adenosine, and Ca-activated K+ channels] did not significantly affect SVR in either eNOS-Tg or WT mice, whereas the marked vasoconstrictor responses to ATP-sensitive K+ and voltage-dependent K+ channel blockade were similar in WT and eNOS-Tg mice. In conclusion, the vasodilator effects of eNOS overexpression are attenuated by a blunted NO responsiveness, likely at the level of guanylyl cyclase, without evidence of eNOS uncoupling or adaptations in other vasoregulatory pathways.

2011 ◽  
Vol 301 (3) ◽  
pp. H721-H729 ◽  
Author(s):  
Katsuhiko Noguchi ◽  
Naobumi Hamadate ◽  
Toshihiro Matsuzaki ◽  
Mayuko Sakanashi ◽  
Junko Nakasone ◽  
...  

An elevation of oxidized forms of tetrahydrobiopterin (BH4), especially dihydrobiopterin (BH2), has been reported in the setting of oxidative stress, such as arteriosclerotic/atherosclerotic disorders, where endothelial nitric oxide synthase (eNOS) is dysfunctional, but the role of BH2 in the regulation of eNOS activity in vivo remains to be evaluated. This study was designed to clarify whether increasing BH2 concentration causes endothelial dysfunction in rats. To increase vascular BH2 levels, the BH2 precursor sepiapterin (SEP) was intravenously given after the administration of the specific dihydrofolate reductase inhibitor methotrexate (MTX) to block intracellular conversion of BH2 to BH4. MTX/SEP treatment did not significantly affect aortic BH4 levels compared with control treatment. However, MTX/SEP treatment markedly augmented aortic BH2 levels (291.1 ± 29.2 vs. 33.4 ± 6.4 pmol/g, P < 0.01) in association with moderate hypertension. Treatment with MTX alone did not significantly alter blood pressure or BH4 levels but decreased the BH4-to-BH2 ratio. Treatment with MTX/SEP, but not with MTX alone, impaired ACh-induced vasodilator and depressor responses compared with the control treatment (both P < 0.05) and also aggravated ACh-induced endothelium-dependent relaxations ( P < 0.05) of isolated aortas without affecting sodium nitroprusside-induced endothelium-independent relaxations. Importantly, MTX/SEP treatment significantly enhanced aortic superoxide production, which was diminished by NOS inhibitor treatment, and the impaired ACh-induced relaxations were reversed with SOD ( P < 0.05), suggesting the involvement of eNOS uncoupling. These results indicate, for the first time, that increasing BH2 causes eNOS dysfunction in vivo even in the absence of BH4 deficiency, demonstrating a novel insight into the regulation of endothelial function.


2021 ◽  
Vol 22 (17) ◽  
pp. 9556
Author(s):  
Fabiana Henriques Machado de Melo ◽  
Diego Assis Gonçalves ◽  
Ricardo Xisto de Sousa ◽  
Marcelo Yudi Icimoto ◽  
Denise de Castro Fernandes ◽  
...  

Melanoma is the most aggressive type of skin cancer due to its high capability of developing metastasis and acquiring chemoresistance. Altered redox homeostasis induced by increased reactive oxygen species is associated with melanomagenesis through modulation of redox signaling pathways. Dysfunctional endothelial nitric oxide synthase (eNOS) produces superoxide anion (O2−•) and contributes to the establishment of a pro-oxidant environment in melanoma. Although decreased tetrahydrobiopterin (BH4) bioavailability is associated with eNOS uncoupling in endothelial and human melanoma cells, in the present work we show that eNOS uncoupling in metastatic melanoma cells expressing the genes from de novo biopterin synthesis pathway Gch1, Pts, and Spr, and high BH4 concentration and BH4:BH2 ratio. Western blot analysis showed increased expression of Nos3, altering the stoichiometry balance between eNOS and BH4, contributing to NOS uncoupling. Both treatment with L-sepiapterin and eNOS downregulation induced increased nitric oxide (NO) and decreased O2• levels, triggering NOS coupling and reducing cell growth and resistance to anoikis and dacarbazine chemotherapy. Moreover, restoration of eNOS activity impaired tumor growth in vivo. Finally, NOS3 expression was found to be increased in human metastatic melanoma samples compared with the primary site. eNOS dysfunction may be an important mechanism supporting metastatic melanoma growth and hence a potential target for therapy.


2012 ◽  
Vol 302 (5) ◽  
pp. E481-E495 ◽  
Author(s):  
Rinrada Kietadisorn ◽  
Rio P. Juni ◽  
An L. Moens

Endothelial nitric oxide synthase (eNOS) serves as a critical enzyme in maintaining vascular pressure by producing nitric oxide (NO); hence, it has a crucial role in the regulation of endothelial function. The bioavailability of eNOS-derived NO is crucial for this function and might be affected at multiple levels. Uncoupling of eNOS, with subsequently less NO and more superoxide generation, is one of the major underlying causes of endothelial dysfunction found in atherosclerosis, diabetes, hypertension, cigarette smoking, hyperhomocysteinemia, and ischemia/reperfusion injury. Therefore, modulating eNOS uncoupling by stabilizing eNOS activity, enhancing its substrate, cofactors, and transcription, and reversing uncoupled eNOS are attractive therapeutic approaches to improve endothelial function. This review provides an extensive overview of the important role of eNOS uncoupling in the pathogenesis of endothelial dysfunction and the potential therapeutic interventions to modulate eNOS for tackling endothelial dysfunction.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Yanti Octavia ◽  
Elza v Deel ◽  
Monique d Waard ◽  
Martine d Boer ◽  
An Moens ◽  
...  

AIMS: Beneficial effects of aerobic exercise training are widely recognized. However, previously we discovered that the positive effects of exercise depend on the underlying cause of cardiac failure. Here we tested the hypothesis that endothelial nitric oxide synthase (eNOS) dependent regulation of the balance between nitric oxide and superoxide (O2•-) is critically involved in determining the effects of exercise. METHODS: Mice were exposed to 8 weeks of voluntary wheel running exercise training (EX) or sedentary housing (SED) immediately following myocardial infarction (MI), pressure overload from a transverse aortic constriction (TAC), or sham (SH) surgery. Subsequently, left ventricular (LV) ejection fraction (EF) was measured by echocardiography and Picrosirius Red staining was performed to measure collagen content. Additionally, total and NOS-dependent LV O2•- were measured using lucigenin-enhanced chemiluminescence without or with NOS inhibitor, L-NAME. eNOS uncoupling was evaluated by determining eNOS monomer dimer protein ratio and peroxynitrite (ONOO-) levels were measured through luminol-enhanced chemiluminescence. RESULTS: Cardiac dysfunction and fibrosis were ameliorated by exercise in MI but not in TAC mice (Table 1). MI and TAC both increased LV O2•- levels. Strikingly, EX diminished O2•- generation in MI, but exacerbated O2•- generation in TAC (Table 1). Furthermore, the EX-induced increase in O2•- levels in TAC were largely NOS-dependent. Accordingly, MI and TAC-induced eNOS uncoupling was normalized by EX in MI but aggravated in TAC mice (Table 1). Similarly, increased ONOO- levels following MI and TAC were diminished by EX in MI, but exacerbated by EX in TAC (Table 1). CONCLUSIONS: EX reduces eNOS-mediated cardiac oxidative stress in MI. In contrast, beneficial effects of EX are lacking in cardiac pressure-overload following TAC, due to EX-induced aggravation of ONOO- formation, eNOS uncoupling and concomitant oxidative stress.


2000 ◽  
Vol 278 (6) ◽  
pp. H1799-H1806 ◽  
Author(s):  
Dhananjaya K. Kaul ◽  
Xiao-Du Liu ◽  
Mary E. Fabry ◽  
Ronald L. Nagel

Transgenic sickle mice expressing human βS- and βS-Antilles-globins show intravascular sickling, red blood cell adhesion, and attenuated arteriolar constriction in response to oxygen. We hypothesize that these abnormalities and the likely endothelial damage, also reported in sickle cell anemia, alter nitric oxide (NO)-mediated microvascular responses and hemodynamics in this mouse model. Transgenic mice showed a lower mean arterial pressure (MAP) compared with control groups (90 ± 7 vs. 113 ± 8 mmHg, P < 0.00001), accompanied by increased endothelial nitric oxide synthase (eNOS) expression. NG-nitro-l-arginine methyl ester (l-NAME), a nonselective inhibitor of NOS, caused an ∼30% increase in MAP and ∼40% decrease in the diameters of cremaster muscle arterioles (branching orders: A2 and A3) in both control and transgenic mice, confirming NOS activity; these changes were reversible after l-arginine administration. Aminoguanidine, an inhibitor of inducible NOS, had no effect. Transgenic mice showed a decreased ( P < 0.02–0.01) arteriolar dilation in response to NO-mediated vasodilators, i.e., ACh and sodium nitroprusside (SNP). Indomethacin did not alter the responses to ACh and SNP. Forskolin, a cAMP-activating agent, caused a comparable dilation of A2 and A3 vessels (∼44 and 70%) in both groups of mice. Thus in transgenic mice, an increased eNOS/NO activity results in lower blood pressure and diminished arteriolar responses to NO-mediated vasodilators. Although the increased NOS/NO activity may compensate for flow abnormalities, it may also cause pathophysiological alterations in vascular tone.


2001 ◽  
Vol 21 (8) ◽  
pp. 907-913 ◽  
Author(s):  
Hao-Liang Xu ◽  
Elena Galea ◽  
Roberto A. Santizo ◽  
Verna L. Baughman ◽  
Dale A. Pelligrino

The marked impairment in cerebrovascular endothelial nitric oxide synthase (eNOS) function that develops after ovariectomy may relate to the observation that the abundance of cerebral vascular eNOS and its endogenous inhibitor, caveolin-1, vary in opposite directions with chronic changes in estrogen status. The authors endeavored, therefore, to establish a link between these correlative findings by independently manipulating, in ovariectomized female rats, eNOS and caveolin-1 expression, while monitoring agonist (acetylcholine)-stimulated eNOS functional activity. In the current study, the authors showed that individually neither the up-regulation of eNOS (through simvastatin treatment), nor the down-regulation of caveolin-1 (through antisense oligonucleotide administration) is capable of restoring eNOS function in pial arterioles in vivo in these estrogen-depleted rats. Only when eNOS up-regulation and caveolin-1 down-regulation are combined is activity normalized. These results establish a mechanistic link between the estrogen-associated divergent changes in the abundance of caveolin-1 and eNOS protein and eNOS functional activity in cerebral arterioles.


Sign in / Sign up

Export Citation Format

Share Document