The intermediary metabolite pyruvate attenuates stunning and reduces infarct size in in vivo porcine myocardium

2004 ◽  
Vol 286 (2) ◽  
pp. H517-H524 ◽  
Author(s):  
Gentian Kristo ◽  
Yukihiro Yoshimura ◽  
Jianli Niu ◽  
Byron J. Keith ◽  
Robert M. Mentzer ◽  
...  

The intermediary metabolite pyruvate has been shown to exert significant beneficial effects in in vitro models of myocardial oxidative stress and ischemia-reperfusion injury. However, there have been few reports of the ability of pyruvate to attenuate myocardial stunning or reduce infarct size in vivo. This study tested whether supraphysiological levels of pyruvate protect against reversible and irreversible in vivo myocardial ischemia-reperfusion injury. Anesthetized, open-chest pigs ( n = 7/group) underwent 15 min of left anterior descending coronary artery (LAD) occlusion and 3 h of reperfusion to induce stunning. Load-insensitive contractility measurements of regional preload recruitable stroke work (PRSW) and PRSW area (PRSWA) were generated. Vehicle or pyruvate (100 mg/kg iv bolus + 10 mg·kg–1·min–1 intra-atrial infusion) was administered during ischemia and for the first hour of reperfusion. In infarct studies, pigs ( n = 6/group) underwent 1 h of LAD ischemia and 3 h of reperfusion. Group I pigs received vehicle or pyruvate for 30 min before and throughout ischemia. In group II, the infusion was extended through 1 h of reperfusion. In the stunning protocol, pyruvate significantly improved the recovery of PRSWA at 1 h (50 ± 4% vs. 23 ± 3% in controls) and 3 h (69 ± 5% vs. 39 ± 3% in controls) reperfusion. Control pigs exhibited infarct sizes of 66 ± 1% of the area at risk. The pyruvate I protocol was associated with an infarct size of 49 ± 3% ( P < 0.05), whereas the pyruvate II protocol was associated with an infarct size of 30 ± 2% ( P < 0.05 vs. control and pyruvate I). These findings suggest that pyruvate attenuates stunning and decreases myocardial infarction in vivo in part by reduction of reperfusion injury. Metabolic interventions such as pyruvate should be considered when designing the optimal therapeutic strategies for limiting myocardial ischemia-reperfusion injury.

2013 ◽  
Vol 680 ◽  
pp. 617-619 ◽  
Author(s):  
Da Peng Gao ◽  
Guo Qing Zhao ◽  
Jia Wang ◽  
Ming Gao

Objective.To investigate the effects of morphine postconditioning on Myocardial ischemia reperfusion injury in rats in vivo. Methods. To randomly divide 40 male SD rats equally into 4 groups, including Sham group in which the chest was opened without ligating the left coronary artery, ischemia-reperfusion group(Group I/R ), ischemic preconditioning group(Group IPC ) and morphine postconditioning group(GroupMOR) in which 0. 3 mg/kg morphine was given intravenously 5 min before reperfusion. The left anterior descending coronary arterys(LAD) of rats in five groups are ligated for 30 minutes and are re-perfused for 90 minutes. Cardiac Apoptosis was determined quantitatively by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) methods. To calculate the concentration of the serum malondialdehyde(MDA) with Thiobarbituric acid (TBA) reaction method and the activity of the superoxide dismutase (SOD) with xanthine oxidase reaction method. Result. Comparing with Group S, the quantity of the cardiac apoptosis in Group I/R, IPC and MOR rised in different levels. Comparing with Group 1/R, the quantity of the cardiac apoptosis in Group IPC and MOR reduced obviously. Comparing with Group 1/R, the concentration of the serum malondialdehyde (MDA) in the other four groups all reduced and the activity of the superoxide dismutase increased. Conclusion. Morphine postconditioning can significantly reduce myocardial apoptosis induced by ischemia-reperfusion injury,reduce myocardial infarct size, decrease the concentration of MDA, and increase the activity of SOD. Therefore, morphine postconditioning has protective effects on myocardial ischemia-reperfusion injury in rats in vivo. Morphine is a potent kind of opioid analgesics, which is widely used in clinical anesthesia. However, further studies are needed on effects of morphine postconditioning on myocardial ischemia reperfusion injury. In order to provide the foundations for clinical application, the authors investigate the effects of morphine postconditioning on myocardial ischemia reperfusion injury through comparison and analysis of the cardiac apoptosis, the concentration of the serum malondialdehyde (MDA) and the activity of the superoxide dismutase (SOD) in Group S, I/R, IPC and MOR.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Fadhil G. Al-Amran ◽  
Najah R. Hadi ◽  
Haider S. H. Al-Qassam

Background. Global myocardial ischemia reperfusion injury after heart transplantation is believed to impair graft function and aggravate both acute and chronic rejection episodes. Objectives. To assess the possible protective potential of MK-886 and 3,5-diiodothyropropionic acid DITPA against global myocardial ischemia reperfusion injury after heart transplantation. Materials and Methods. Adult albino rats were randomized into 6 groups as follows: group I sham group; group II, control group; groups III and IV, control vehicles (1,2); group V, MK-886 treated group. Donor rats received MK-886 30 min before transplantation, and the same dose was repeated for recipients upon reperfusion; in group VI, DITPA treated group, donors and recipients rats were pretreated with DITPA for 7 days before transplantation. Results. Both MK-886 and DITPA significantly counteract the increase in the levels of cardiac TNF-α, IL-1β, and ICAM-1 and plasma level of cTnI (). Morphologic analysis showed that both MK-886 and DITPA markedly improved () the severity of cardiac injury in the heterotopically transplanted rats. Conclusions. The results of our study reveal that both MK-886 and DITPA may ameliorate global myocardial ischemia reperfusion injury after heart transplantation via interfering with inflammatory pathway.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Jingyuan Li ◽  
Victor R Grijalva ◽  
Srinivasa T Reddy ◽  
Mansoureh Eghbali

Objectives: Paraoxonases (PON) gene family consists of three proteins PON1, PON2, and PON3. PON2 is an intracellular membrane-associated protein that is widely expressed in vascular cells and many tissues. At the subcellular level, PON2 is localized to both the ER and mitochondria, and protects against oxidative stress. Hypothesis: The aim of this study was to investigate the role of PON2 in myocardial ischemia reperfusion injury. Methods: PON2 deficient (PON2-/-) and WT male mice were subjected to in-vivo ischemia/reperfusion injury. The left anterior descending coronary artery was occluded for 30 min followed by 24 hr of reperfusion. The infarct size, mitochondrial calcium retention capacity (CRC) and reactive oxygen species (ROS) generation were measured. The expression of C/EBP homologous protein (CHOP), GSK3b and phosphate GSK3b protein were examined by Western Blot. The number of animals was 5-7/group and data were expressed as mean±SEM. T test were used for statistical analysis. Probability values <0.05 were considered statistically significant. Results: The infarct size was ~2 fold larger in PON2 deficient mice compared to WT mice (p<0.05). The threshold for opening of mitochondrial permeability transition pore (mPTP) in response to calcium overload was much lower in PON2-/- mice compared with WT mice (173±19 in PON2-/-, 250±41 in WT, nmol/mg-mitochondrial protein, p<0.05). The ROS production was ~2 fold higher in isolated cardiac mitochondria from PON2-/- mice compared with WT mice (p<0.05). ER stress protein CHOP increased significantly in PON2-/- mice compared to WT mice (normalized to WT: 1±0.05 in WT, 1.66±0.08 in PON2-/-, p<0.001). Phospho-GSK3b level was significantly downregulated in in PON2-/- mice compared to WT mice (pGSK3b/GSK3b normalized to WT: 1±0.06 in WT 0.67±0.08 in PON2-/-, p<0.05). Conclusions: PON2 regulates myocardial ischemia/reperfusion injury via inhibiting the opening of mPTP, which is associated with reduced mitochondria ROS production, deactivation of ER stress signaling CHOP and GSK3b.


2008 ◽  
Vol 295 (5) ◽  
pp. H2128-H2134 ◽  
Author(s):  
Atsuko Motoki ◽  
Matthias J. Merkel ◽  
William H. Packwood ◽  
Zhiping Cao ◽  
Lijuan Liu ◽  
...  

Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. EETs are formed from arachidonic acid during myocardial ischemia and play a protective role against ischemic cell death. Deletion of sEH has been shown to be protective against myocardial ischemia in the isolated heart preparation. We tested the hypothesis that sEH inactivation by targeted gene deletion or pharmacological inhibition reduces infarct size (I) after regional myocardial ischemia-reperfusion injury in vivo. Male C57BL\6J wild-type or sEH knockout mice were subjected to 40 min of left coronary artery (LCA) occlusion and 2 h of reperfusion. Wild-type mice were injected intraperitoneally with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE), a sEH inhibitor, 30 min before LCA occlusion or during ischemia 10 min before reperfusion. 14,15-EET, the main substrate for sEH, was administered intravenously 15 min before LCA occlusion or during ischemia 5 min before reperfusion. The EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE) was given intravenously 15 min before reperfusion. Area at risk (AAR) and I were assessed using fluorescent microspheres and triphenyltetrazolium chloride, and I was expressed as I/AAR. I was significantly reduced in animals treated with AUDA-BE or 14,15-EET, independent of the time of administration. The cardioprotective effect of AUDA-BE was abolished by the EET antagonist 14,15-EEZE. Immunohistochemistry revealed abundant sEH protein expression in left ventricular tissue. Strategies to increase 14,15-EET, including sEH inactivation, may represent a novel therapeutic approach for cardioprotection against myocardial ischemia-reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document