Hemodynamic interplay of vorticity, viscous energy loss, and kinetic energy from 4D Flow MRI and link to cardiac function in healthy subjects and Fontan patients

2021 ◽  
Vol 320 (4) ◽  
pp. H1687-H1698
Author(s):  
Vivian P. Kamphuis ◽  
Arno A. W. Roest ◽  
Pieter J. van den Boogaard ◽  
Lucia J. M. Kroft ◽  
Hildo J. Lamb ◽  
...  

Physiologic intraventricular hemodynamic interplay/coupling is present in the healthy left ventricle between vorticity versus viscous energy loss and kinetic energy from four-dimensional flow cardiovascular magnetic resonance imaging (4D Flow MRI). Conversely, Fontan patients present compensatory pathophysiologic hemodynamic coupling by an increase in intraventricular vorticity that positively correlates to viscous energy loss and kinetic energy levels in the presence of maintained normal stroke volume. Altered vorticity and energetics are found in the presence of normal ejection fraction in Fontan patients.

2018 ◽  
Vol 34 (6) ◽  
pp. 905-920 ◽  
Author(s):  
Vivian P. Kamphuis ◽  
Jos J. M. Westenberg ◽  
Roel L. F. van der Palen ◽  
Pieter J. van den Boogaard ◽  
Rob J. van der Geest ◽  
...  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Z Dai ◽  
N Iguchi ◽  
I Takamisawa ◽  
M Takayama ◽  
M Nanasato ◽  
...  

Abstract Background Functional follow-up modalities of hypertrophic obstructive cardiomyopathy (HOCM) subjected to percutaneous transluminal septal myocardial ablation (PTSMA) are limited mainly to echocardiography and catheterization. Recent advancements in four-dimensional (4D) flow magnetic resonance imaging (MRI) have enabled us to assess patients from the perspective of fluid dynamics by visualising blood flow and calculating quantitative parameters such as wall shear stress and energy loss within cardiac chambers or blood vessels. Several reports have demonstrated that the intra-cardiac energy loss decreased along with improvement of cardiac function achieved by treatment of cardiac diseases. Whether changes in energy loss occur along with PTSMA in HOCM patients and the underlying mechanism remain unknown. Purpose This study sought to investigate the influence of PTSMA in patients with HOCM on energy loss in the left ventricle (LV) and aortic root measured by 4D flow MRI. Methods We retrospectively recruited HOCM patients who underwent PTSMA at a referral centre from May to November 2019. Patients who underwent 4D flow MRI both before and after PTSMA were included. We collected demographic and clinical data from electronic health records. MRI scans implemented two-dimensional phase-contrast imaging of the three-chamber plane with three-directional velocity, using a 1.5 T scanner. Furthermore, 4D blood flow analysis was performed on off-line saved data, using iTFlow version 1.9. We assessed energy loss in one cardiac cycle within the three-chamber plane of the LV and aortic root (area surrounded by the LV endocardium, sinotubular junction, and mitral annulus). Results This study finally included 12 patients, whose mean age was 66±12 years, and 5 (42%) of whom were men. The pressure gradient between the LV apex and ascending aorta was 81±32 mmHg before and 20±22 mmHg immediately after PTSMA (P<0.005, paired). Before PTSMA, 6 patients were in New York Heart Association functional class III and the other 6 in class II. However, after PTSMA, 10 patients improved to class I and 2 to class II. PTSMA reduced energy loss in one cardiac cycle within the three-chamber plane of the LV and aortic root, from 79±36 mJ/m to 55±19 mJ/m (P=0.001, paired). Conclusions PTSMA in patients with HOCM reduced energy loss within the LV and aortic root, indicating significant decrease with cardiac workload. Four-dimensional flow MRI of the three-chamber plane to assess energy loss within the LV and aortic root is a time-efficient and reproducible quantitative method to evaluate the effects of PTSMA. Given its non-invasive nature, it also enables to sequentially follow-up HOCM patients who underwent PTSMA. Periprocedural changes of energy loss Funding Acknowledgement Type of funding source: None


2018 ◽  
Vol 20 (3) ◽  
pp. 323-333 ◽  
Author(s):  
Vivian P Kamphuis ◽  
Mohammed S M Elbaz ◽  
Pieter J van den Boogaard ◽  
Lucia J M Kroft ◽  
Rob J van der Geest ◽  
...  

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
J Matsuda ◽  
H Takano ◽  
T Sekine ◽  
H Sangen ◽  
Y Kubota ◽  
...  

Abstract Four-dimensional flow magnetic resonance imaging (4D flow MRI) provides the detailed visualization of complex blood flow patterns and the evaluation of energy loss. Turbulent kinetic energy estimation (TKE) is reported to have good correlation with irreversible pressure loss in patients having aortic stenosis or great vessel disease. However, little is known about the usefulness of 4D flow MRI and the significance of TKE value in hypertrophic cardiomyopathy (HCM). Purpose The aims of this study were to investigate the relationship between TKE value and echocardiographic findings, clinical symptoms and evaluate the usefulness of 4D flow MRI to distinguish hypertrophic obstructive cardiomyopathy (HOCM) from non-obstructive HCM (HNCM). Methods From April 2018 to January 2019, 18 hypertrophic obstructive cardiomyopathy (HOCM) and 14 non-obstructive HCM (HNCM) patients underwent 4D flow MRI. We investigated TKE value calculated by 4D flow MRI, echocardiographic findings; left ventricular pressure gradient (LVPG), mitral regurgitation (MR) and clinical symptom. Results HOCM was defined by the 30 mmHg or greater of LVPG (HOCM: 87.7±47.3 mmHg, HNCM; 5.8±7.8 mmHg, p<0.001). TKE value in HOCM patients was significantly higher than HNCM (14.2±4.7 mJ vs. 9.0±4.6 mJ, p<0.001). There was a significant positive linear relationship between TKE value and LVPG (r=0.488, p=0.046). There was no significant relationship between NYHA functional class and TKE value (p=0.47) or LVPG (p=0.11). ROC curve analysis showed that optimal cut off point of TKE value between HOCM and HNCM (sensitivity=95%, specificity=62%, AUC=0.798) was 9.270 mJ. Multiple linear regression showed that there was significant association between severity of MR and combination of TKE (p=0.015) or LVPG (p–=0.012). A representative case demonstrated the significant reduction of TKE value 1 week and 3 months after alcohol septal reduction compared with that obtained before the procedure (Figure) Conclusion Our findings suggest that 4D Flow MRI can effectively evaluate the energy dissipation associated with LV outflow tract obstruction and TKE value is useful for identifying HOCM. TKE value also can be the novel parameter of the severity of HOCM.


Author(s):  
Friso M Rijnberg ◽  
Joe F Juffermans ◽  
Mark G Hazekamp ◽  
Willem A Helbing ◽  
Hildo J Lamb ◽  
...  

Abstract Objectives To study flow-related energetics in multiple anatomical segments of the total cavopulmonary connection (TCPC) in Fontan patients from 4D flow MRI, and to study the relationship between adverse flow patterns and segment-specific energetics. Methods Twenty-six extracardiac Fontan patients underwent 4D flow MRI of the TCPC. A segmentation of the TCPC was automatically divided into 5 anatomical segments (conduit, superior vena cava, right/left pulmonary artery (PA) and the Fontan confluence). The presence of vortical flow in the PAs or Fontan confluence was qualitatively scored. Kinetic energy, viscous energy loss and vorticity were calculated from the 4D flow MRI velocity field and normalized for segment length and/or inflow. Energetics were compared between segments and the relationship between vortical flow and segment cross-sectional area (CSA) with segment-specific energetics was determined. Results Vortical flow in the LPA (n = 6) and Fontan confluence (n = 12) were associated with significantly higher vorticity (p = 0.001 and p = 0.015, respectively) and viscous energy loss rate (p = 0.046 and p = 0.04, respectively) compared to patients without vortical flow. The LPA and conduit segments showed the highest kinetic energy and viscous energy loss rate, while most favorable energetics were observed in the superior vena cava. Conduit CSA inversely correlated with kinetic energy (r= -0.614, p = 0.019) and viscous energy loss rate (r= -0.652, p = 0.011). Conclusions Vortical flow in the Fontan confluence and LPA associated with significantly increased viscous energy loss rate. 4D flow MRI derived energetics may be used as a screening tool for direct, MRI-based assessment of flow efficiency in the TCPC.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 767
Author(s):  
Simon O. Haarbye ◽  
Michael B. Nielsen ◽  
Adam E. Hansen ◽  
Carsten A. Lauridsen

The aim of this systematic review is to provide an overview of the use of Four-Dimensional Magnetic Resonance Imaging of vector blood flow (4D Flow MRI) in the abdominal veins. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in MEDLINE, Cochrane Library, EMBASE, and Web of Science. Quality assessment of the included studies was performed using the QUADAS-2 tool. The initial search yielded 781 studies and 21 studies were included. All studies successfully applied 4D Flow MRI in abdominal veins. Four-Dimensional Flow MRI was capable of discerning between healthy subjects and patients with cirrhosis and/or portal hypertension. The visual quality and inter-observer agreement of 4D Flow MRI were rated as excellent and good to excellent, respectively, and the studies utilized several different MRI data sampling strategies. By applying spiral sampling with compressed sensing to 4D Flow MRI, the blood flow of several abdominal veins could be imaged simultaneously in 18–25 s, without a significant loss of visual quality. Four-Dimensional Flow MRI might be a useful alternative to Doppler sonography for the diagnosis of cirrhosis and portal hypertension. Further clinical studies need to establish consensus regarding MRI sampling strategies in patients and healthy subjects.


Author(s):  
Philip A Corrado ◽  
Gregory P Barton ◽  
Christopher J François ◽  
Oliver Wieben ◽  
Kara N Goss

Background: Extreme preterm birth conveys an elevated risk of heart failure by young adulthood. Smaller biventricular chamber size, diastolic dysfunction, and pulmonary hypertension may contribute to reduced ventricular-vascular coupling. However, how hemodynamic manipulations may affect right ventricular (RV) function and coupling remains unknown. Methods: As a pilot study, 4D flow MRI was used to assess the effect of afterload reduction and heart rate reduction on cardiac hemodynamics and function. Young adults born premature were administered sildenafil (a pulmonary vasodilator) and metoprolol (a beta blocker) on separate days, and MRI with 4D flow completed before and after each drug administration. Endpoints include cardiac index (CI), direct flow fractions, and ventricular kinetic energy including E/A wave kinetic energy ratio. Results: Sildenafil resulted in a median CI increase of 0.24 L/min/m2 (P=0.02), mediated through both an increase in heart rate (HR) and stroke volume. Although RV ejection fraction improved only modestly, there was a significant increase (4% of end diastolic volume) in RV direct flow fraction (P=0.04), consistent with hemodynamic improvement. Metoprolol administration resulted in a 5-bpm median decrease in HR (P=0.01), a 0.37 L/min/m2 median decrease in CI (P=0.04), and a reduction in time-averaged kinetic energy (KE) in both ventricles (P<0.01), despite increased RV diastolic E/A KE ratio (P=0.04). Conclusions: Despite reduced right atrial workload, metoprolol significantly depressed overall cardiac systolic function. Sildenafil, however, increased CI and improved RV function, as quantified by the direct flow fraction. The preterm heart appears dependent on HR, but sensitive to RV afterload manipulations.


2019 ◽  
Vol 40 (26) ◽  
pp. 2170-2170
Author(s):  
Friso M Rijnberg ◽  
Hans C van Assen ◽  
Mark G Hazekamp ◽  
Arno A W Roest

Sign in / Sign up

Export Citation Format

Share Document