scholarly journals Vascular smooth muscle desensitization in rabbit epigastric and mesenteric arteries during hemorrhagic shock

2016 ◽  
Vol 311 (1) ◽  
pp. H157-H167 ◽  
Author(s):  
P. H. Ratz ◽  
A. S. Miner ◽  
Y. Huang ◽  
C. A. Smith ◽  
R. W. Barbee

The decompensatory phase of hemorrhage (shock) is caused by a poorly defined phenomenon termed vascular hyporeactivity (VHR). VHR may reflect an acute in vivo imbalance in levels of contractile and relaxant stimuli favoring net vascular smooth muscle (VSM) relaxation. Alternatively, VHR may be caused by intrinsic VSM desensitization of contraction resulting from prior exposure to high levels of stimuli that temporarily adjusts cell signaling systems. Net relaxation, but not desensitization, would be expected to resolve rapidly in an artery segment removed from the in vivo shock environment and examined in vitro in a fresh solution. Our aim was to 1) induce shock in rabbits and apply an in vitro mechanical analysis on muscular arteries isolated pre- and postshock to determine whether VHR involves intrinsic VSM desensitization, and 2) identify whether net VSM relaxation induced by nitric oxide and cyclic nucleotide-dependent protein kinase activation in vitro can be sustained for some time after relaxant stimulus washout. The potencies of phenylephrine- and histamine-induced contractions in in vitro epigastric artery removed from rabbits posthemorrhage were decreased by ∼0.3 log units compared with the control contralateral epigastric artery removed prehemorrhage. Moreover, a decrease in KCl-induced tonic, relative to phasic, tension of in vitro mesenteric artery correlated with the degree of shock severity as assessed by rates of lactate and K+ accumulation. VSM desensitization was also caused by tyramine in vivo and PE in vitro, but not by relaxant agents in vitro. Together, these results support the hypothesis that VHR during hemorrhagic decompensation involves contractile stimulus-induced long-lasting, intrinsic VSM desensitization.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Fisher ◽  
J J Reho ◽  
M Meddeb ◽  
J Ursitti ◽  
M Htet

Abstract Background Despite the many drugs for treatment of hypertension, it remains inadequately treated in >50% of patients and the number one contributor to cardiovascular mortality world-wide. Thus new targets and treatment strategies are badly needed. Myosin Phosphatase (MP) is a viable target: it is the primary effector of vascular smooth muscle relaxation and a critical mediator of signaling pathways regulating vessel tone. Purpose We are using complementary/ translatable approaches to test the hypothesis: editing of the Myosin Phosphatase Regulatory (Targeting) subunit (MYPT1), by shifting the expression of naturally occurring isoforms, will sensitize vascular smooth muscle to NO/cGMP/ROS mediated vasorelaxation and thereby lower BP in models of hypertension. A further goal is to determine mechanisms by which these signals activate MP thereby causing vasorelaxation. Methods LoxP sites were inserted in introns flanking alternative Exon24 (E24) of Mypt1. Mice were crossed with smMHCCreER mice and treated with Tamoxifen for smooth muscle specific deletion of E24 (SMcKO E24).Skipping E24 codes for a Mypt1 isoform that contains a C-terminal leucine zipper (LZ) motif required for cGMP-dependent protein kinase (cGK1) binding and NO/cGMP/ROS activation of MP. Second, we developed and tested guide RNAs for the purpose of AAV-CRISPR/CAS9 editing of Mypt1 E24 as a treatment for hypertension. Effect of editing is tested in otherwise normal mice and in the AngII sub-pressor model of hypertension. Results SMcKO E24 mice had mean BP that was 15+3 mmHg lower than control (n=5; p<0.05). Mesenteric arteries from these mice were significantly more sensitive to DEA/NO mediated relaxation (EC50: 2.1+0.5 nM vs 18.2+5.6 mM; n=5–6, p<0.05). Experiments testing response to AngII infusion are in progress and will be presented at the meeting. Preliminary biochemical assays support a 2-pool model, in which NO/cGMP/ROS activates the LZ+ pool, while contractile agonists inhibit the LZ- pool of MP, in the control of BP/ blood flow. We have generated a number of AAV Crispr/Cas9 gRNAs and validated their efficacy of editing of Mypt1 E24 in vitro. Experiments are in progress to test their efficacy and effect on BP in vivo. Conclusion These studies support that editing of Mypt1 E24 could be a novel strategy for vasodilator sensitization and effective lowering of blood pressure in humans with hypertension, thereby having a substantial impact on CV mortality world-wide. Acknowledgement/Funding NIH


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Nahed El-Najjar ◽  
Rashmi P. Kulkarni ◽  
Nancy Nader ◽  
Rawad Hodeify ◽  
Khaled Machaca

Diabetes is a complex disease that is characterized with hyperglycemia, dyslipidemia, and insulin resistance. These pathologies are associated with significant cardiovascular implications that affect both the macro- and microvasculature. It is therefore important to understand the effects of various pathologies associated with diabetes on the vasculature. Here we directly test the effects of hyperglycemia on vascular smooth muscle (VSM) Ca2+signaling in an isolated in vitro system using the A7r5 rat aortic cell line as a model. We find that prolonged exposure of A7r5 cells to hyperglycemia (weeks) is associated with changes to Ca2+signaling, including most prominently an inhibition of the passive ER Ca2+leak and the sarcoplasmic reticulum Ca2+-ATPase (SERCA). To translate these findings to the in vivo condition, we used primary VSM cells from normal and diabetic subjects and find that only the inhibition of the ER Ca2+leaks replicates in cells from diabetic donors. These results show that prolonged hyperglycemia in isolation alters the Ca2+signaling machinery in VSM cells. However, these alterations are not readily translatable to the whole organism situation where alterations to the Ca2+signaling machinery are different.


1994 ◽  
Vol 269 (11) ◽  
pp. 8504-8509
Author(s):  
K.A. Pritchard ◽  
M.K. O'Banion ◽  
J.M. Miano ◽  
N. Vlasic ◽  
U.G. Bhatia ◽  
...  

2005 ◽  
Vol 108 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Giovanna CASTOLDI ◽  
Serena REDAELLI ◽  
Willy M. M. van de GREEF ◽  
Cira R. T. di GIOIA ◽  
Giuseppe BUSCA ◽  
...  

Ang II (angiotensin II) has multiple effects on vascular smooth muscle cells through the modulation of different classes of genes. Using the mRNA differential-display method to investigate gene expression in rat aortic smooth muscle cells in culture in response to 3 h of Ang II stimulation, we observed that Ang II down-regulated the expression of a member of the family of transmembrane receptors for Wnt proteins that was identified as Fzd2 [Fzd (frizzled)-2 receptor]. Fzds are a class of highly conserved genes playing a fundamental role in the developmental processes. In vitro, time course experiments demonstrated that Ang II induced a significant increase (P<0.05) in Fzd2 expression after 30 min, whereas it caused a significant decrease (P<0.05) in Fzd2 expression at 3 h. A similar rapid up-regulation after Ang II stimulation for 30 min was evident for TGFβ1 (transforming growth factor β1; P<0.05). To investigate whether Ang II also modulated Fzd2 expression in vivo, exogenous Ang II was administered to Sprague–Dawley rats (200 ng·kg−1 of body weight·min−1; subcutaneously) for 1 and 4 weeks. Control rats received normal saline. After treatment, systolic blood pressure was significantly higher (P<0.01), whereas plasma renin activity was suppressed (P<0.01) in Ang II- compared with the saline-treated rats. Ang II administration for 1 week did not modify Fzd2 expression in aorta of Ang II-treated rats, whereas Ang II administration for 4 weeks increased Fzd2 mRNA expression (P<0.05) in the tunica media of the aorta, resulting in a positive immunostaining for fibronectin at this time point. In conclusion, our data demonstrate that Ang II modulates Fzd2 expression in aortic smooth muscle cells both in vitro and in vivo.


2015 ◽  
Vol 37 (5) ◽  
pp. 1817-1829 ◽  
Author(s):  
Kai Huang ◽  
Zhi-Qiang Yan ◽  
Dan Zhao ◽  
Si-Guo Chen ◽  
Li-Zhi Gao ◽  
...  

Background/Aims: Physiological mechanical stretch in vivo helps to maintain the quiescent contractile differentiation of vascular smooth muscle cells (VSMCs), but the underlying mechanisms are still unclear. Here, we investigated the effects of SIRT1 in VSMC differentiation in response to mechanical cyclic stretch. Methods and Results: Rat VSMCs were subjected to 10%-1.25Hz-cyclic stretch in vitro using a FX-4000T system. The data indicated that the expression of contractile markers, including α-actin, calponin and SM22α, was significantly enhanced in VSMCs that were subjected to cyclic stretch compared to the static controls. The expression of SIRT1 and FOXO3a was increased by the stretch, but the expression of FOXO4 was decreased. Decreasing SIRT1 by siRNA transfection attenuated the stretch-induced expression of contractile VSMC markers and FOXO3a. Furthermore, increasing SIRT1 by either treatment with activator resveratrol or transfection with a plasmid to induce overexpression increased the expression of FOXO3a and contractile markers, and decreased the expression of FOXO4 in VSMCs. Similar trends were observed in VSMCs of SIRT1 (+/-) knockout mice. The overexpression of FOXO3a promoted the expression of contractile markers in VSMCs, while the overexpression of FOXO4 demonstrated the opposite effect. Conclusion: Our results indicated that physiological cyclic stretch promotes the contractile differentiation of VSMCs via the SIRT1/FOXO pathways and thus contributes to maintaining vascular homeostasis.


Sign in / Sign up

Export Citation Format

Share Document