Neuroprotection in hypothermia linked to redistribution of oxygen in brain

2003 ◽  
Vol 285 (1) ◽  
pp. H17-H25 ◽  
Author(s):  
Masaharu Sakoh ◽  
Albert Gjedde

Hypothermia improves the outcome of acute ischemic stroke, traumatic injury, and inflammation of brain tissue. We tested the hypothesis that hypothermia reduces the energy metabolism of brain tissue to a level that is commensurate with the prevailing blood flow and hence allows adequate distribution of oxygen to the entire tissue. To determine the effect of 32°C hypothermia on brain tissue, we measured the sequential changes of physiological variables by means of PET in pigs. Cerebral blood flow and oxygen consumption (cerebral metabolic rate of oxygen) declined to 50% of the baseline in 3 and 5 h, respectively, thus elevating the oxygen extraction fraction to 140% of the baseline at 3 h. The results are consistent with the claim that cooling of the brain to 32°C couples both energy metabolism and blood flow to a lower rate of work of the entire tissue.

1984 ◽  
Vol 4 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Shigeharu Takagi ◽  
Kazumasa Ehara ◽  
Peter J. Kenny ◽  
Ronald D. Finn ◽  
Paresh J. Kothari ◽  
...  

No method has been reported for measuring CBF, repeatedly and noninvasively, in the rat brain. A new method is described, which is noninvasive to the brain, skull, or cervical large vessels. Two pairs of coincidence detectors were positioned, one over the rat brain and the other at the loop of a catheter inserted into the femoral artery. The coincidence head curve and arterial curve were recorded after intravenous injection of 1-[11C]butanol in 15 rats. CBF was calculated by one-compartment curve fitting (CBFo) from 1-min data and with the recirculation corrected height/area method from 3-min data (CBFh · 3min) and 5-min data (CBFh · 5min). CBFo agreed well with CBFh · 5min, although a slight overestimation was observed in CBFh · 3min. The normal CBFo in the normocapnic group (n = 6, paco2 36.7 ± 2.3 mm Hg) was 1.76 ± 0.49 ml/g min (mean ± SD). A good correlation was observed between CBFo ( y) and Paco2 ( x), and the regression line was y = 0.0629 x – 0.715 (r = 0.88, p < 0.0001). We concluded that this method gives the stable blood flow values noninvasively and with a minimum loss of blood (<0.28 ml per measurement). Applications of this method include activation studies, studies on the effect of drugs and treatments, and water and oxygen extraction fraction studies using different tracers in the same rat.


BMJ Open ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. e018560 ◽  
Author(s):  
Klaus Ulrik Koch ◽  
Anna Tietze ◽  
Joel Aanerud ◽  
Gorm von Öettingen ◽  
Niels Juul ◽  
...  

IntroductionDuring brain tumour surgery, vasopressor drugs are commonly administered to increase mean arterial blood pressure with the aim of maintaining sufficient cerebral perfusion pressure. Studies of the commonly used vasopressors show that brain oxygen saturation is reduced after phenylephrine administration, but unaltered by ephedrine administration. These findings may be explained by different effects of phenylephrine and ephedrine on the cerebral microcirculation, in particular the capillary transit-time heterogeneity, which determines oxygen extraction efficacy. We hypothesised that phenylephrine is associated with an increase in capillary transit-time heterogeneity and a reduction in cerebral metabolic rate of oxygen compared with ephedrine. Using MRI and positron emission tomography (PET) as measurements in anaesthetised patients with brain tumours, this study will examine whether phenylephrine administration elevates capillary transit-time heterogeneity more than ephedrine, thereby reducing brain oxygenation.Methods and analysisThis is a double-blind, randomised clinical trial including 48 patients scheduled for surgical brain tumour removal. Prior to imaging and surgery, anaesthetised patients will be randomised to receive either phenylephrine or ephedrine infusion until mean arterial blood pressure increases to above 60 mm Hg or 20% above baseline. Twenty-four patients were allocated to MRI and another 24 patients to PET examination. MRI measurements include cerebral blood flow, capillary transit-time heterogeneity, cerebral blood volume, blood mean transit time, and calculated oxygen extraction fraction and cerebral metabolic rate of oxygen for negligible tissue oxygen extraction. PET measurements include cerebral metabolic rate of oxygen, cerebral blood flow and oxygen extraction fraction. Surgery is initiated after MRI/PET measurements and subdural intracranial pressure is measured.Ethics and disseminationThis study was approved by the Central Denmark Region Committee on Health Research Ethics (12 June 2015; 1-10-72-116-15). Results will be disseminated via peer-reviewed publication and presentation at international conferences.Trial registration numberNCT02713087; Pre-results. 2015-001359-60; Pre-results.


2019 ◽  
Author(s):  
Michael Germuska ◽  
Hannah Chandler ◽  
Thomas Okell ◽  
Fabrizio Fasano ◽  
Valentina Tomassini ◽  
...  

AbstractMagnetic resonance imaging (MRI) offers the possibility to non-invasively map the brain’s metabolic oxygen consumption (CMRO2), which is essential for understanding and monitoring neural function in both health and disease. However, in depth study of oxygen metabolism with MRI has so far been hindered by the lack of robust methods. One MRI method of mapping CMRO2 is based on the simultaneous acquisition of cerebral blood flow (CBF) and blood oxygen level dependent (BOLD) weighted images during respiratory modulation of both oxygen and carbon dioxide. Although this dual-calibrated methodology has shown promise in the research setting, current analysis methods are unstable in the presence of noise and/or are computationally demanding. In this paper, we present a machine learning implementation for the multi-parametric assessment of dual-calibrated fMRI data. The proposed method aims to address the issues of stability, accuracy, and computational overhead, removing significant barriers to the investigation of oxygen metabolism with MRI. The method utilizes a time-frequency transformation of the acquired perfusion and BOLD-weighted data, from which appropriate feature vectors are selected for training of machine learning regressors. The implemented machine learning methods are chosen for their robustness to noise and their ability to map complex non-linear relationships (such as those that exist between BOLD signal weighting and blood oxygenation). An extremely randomized trees (ET) regressor is used to estimate resting blood flow and a multi-layer perceptron (MLP) is used to estimate CMRO2 and the oxygen extraction fraction (OEF). Synthetic data with additive noise are used to train the regressors, with data simulated to cover a wide range of physiologically plausible parameters. The performance of the implemented analysis method is compared to published methods both in simulation and with in-vivo data (n=30). The proposed method is demonstrated to significantly reduce computation time, error, and proportional bias in both CMRO2 and OEF estimates. The introduction of the proposed analysis pipeline has the potential to not only increase the detectability of metabolic difference between groups of subjects, but may also allow for single subject examinations within a clinical context.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
parham moftakhar ◽  
Thomas C Glenn ◽  
John Boscardin ◽  
Neil A Martin

Objective: The purpose of this study is to classify and describe the clinically distinct metabolic and hemodynamic phases post-ASAH. Methods: 224 patients who suffered an ASAH (mean age 55±14; 74% female, 26% male) were examined. Patients underwent daily transcranial Doppler (TCD) and cerebral blood flow (CBF) studies (using 133 Xe clearance). Due to the paucity of data on post-hemorrhage day (PHD) 0, the internal carotid artery end-diastolic (ICA ED ) velocity, a surrogate for CBF, was used for the first 24 hours. The brain arteriovenous oxygen difference (AVDO 2 ) was recorded for each patient and the cerebral metabolic rate of oxygen (CMRO 2 ) was calculated. Clinical outcome was evaluated based on the Glasgow Outcome Scale (GOS) 6 months after rupture. Results: Following ASAH, 3 distinct hemodynamic phases arose for the entire study population. Phase I (hypoperfusion phase), occurs on the day of rupture (PHD 0) and is defined by a low ICA ED velocity (mean 17.8±1.1 cm/s), normal middle cerebral artery (MCA) velocity (mean V MCA 58.0±23.4 cm/s), and normal Lindegaard Ratio ([LR], mean 1.66±0.50). Phase II (relative hyperemia), (PHD 1–3), is characterized by an increasing ICA ED (mean 35.4±1.0 cm/s, p<0.0001), a relative hyperemia (mean CBF 15 40.1±1.5 ml/100g/minute, CMRO 2 1.17±0.41 ml/100g/min), a rising V MCA (mean 71.5±5.8 cm/sec, p<0.0001), and a rising but normal LR (mean 2.21±0.19, p<0.0001). During phase III (vasospasm phase, PHD 4–21), both the ICA ED and CBF decrease (mean ICA ED 19.9±0.9 cm/s, p<0.0001; mean CBF 15 36.8±0.7 ml/100g/minute, p=0.04), V MCA continues to rise (mean 107.6±2.9cm/sec, p<0.0001), and the LR is further increased (mean 3.25±0.08, p<0.0001). The CMRO 2 remains low (mean 1.17±0.40 ml/100g/min, p=1). Based on the GOS up to 90% of patients who experienced either a relative or absolute hyperemia had good outcomes. Conclusions: After an ASAH, 3 discrete metabolic and hemodynamic phases arise each with the potential for its own unique phase-specific management and therapy. Relative hyperemia, or “luxury perfusion,” during Phase II in the setting of non-elevated ICPs may provide some type of benefit for patients.


Sign in / Sign up

Export Citation Format

Share Document