scholarly journals Inhibitory effect of D1-like and D3 dopamine receptors on norepinephrine-induced proliferation in vascular smooth muscle cells

2008 ◽  
Vol 294 (6) ◽  
pp. H2761-H2768 ◽  
Author(s):  
Zhen Li ◽  
Changqing Yu ◽  
Yu Han ◽  
Hongmei Ren ◽  
Weibin Shi ◽  
...  

The sympathetic nervous system plays an important role in the regulation of blood pressure. There is increasing evidence for positive and negative interactions between dopamine and adrenergic receptors; the activation of the α-adrenergic receptor induces vasoconstriction, whereas the activation of dopamine receptor induces vasorelaxation. We hypothesize that the D1-like receptor and/or D3 receptor also inhibit α1-adrenergic receptor-mediated proliferation in vascular smooth muscle cells (VSMCs). In this study, VSMC proliferation was determined by measuring [3H]thymidine incorporation, cell number, and uptake of 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide (MTT). Norepinephrine increased VSMC number and MTT uptake, as well as [3H]thymidine incorporation via the α1-adrenergic receptor in aortic VSMCs from Sprague-Dawley rats. The proliferative effects of norepinephrine were attenuated by the activation of D1-like receptors or D3 receptors, although a D1-like receptor agonist, fenoldopam, and a D3 receptor agonist, PD-128907, by themselves, at low concentrations, had no effect on VSMC proliferation. Simultaneous stimulation of both D1-like and D3 receptors had an additive inhibitory effect. The inhibitory effect of D3 receptor was via protein kinase A, whereas the D1-like receptor effect was via protein kinase C-ζ. The interaction between α1-adrenergic and dopamine receptors, especially D1-like and D3 receptors in VSMCs, could be involved in the pathogenesis of hypertension.

1996 ◽  
Vol 270 (6) ◽  
pp. C1642-C1646 ◽  
Author(s):  
C. E. Irons ◽  
M. A. Flynn ◽  
L. M. Mok ◽  
E. E. Reynolds

Intracellular signaling mechanisms affected by endothelin (ET), a hypertrophic agonist, and platelet-derived growth factor (PDGF)-BB, a proliferative agonist, in vascular smooth muscle cells were examined. PDGF-BB was a potent mitogen compared with untreated cultures, stimulating both [3H]thymidine incorporation and cell number. In contrast, ET was a poor mitogen, enhancing [3H]thymidine incorporation but not cell number. Simultaneous ET and PDGF-BB treatment was significantly more effective than either agonist alone at stimulating both [3H]thymidine uptake and cell number. Although either ET or PDGF-BB alone stimulated arachidonic acid release, phosphoinositide hydrolysis, protein kinase C activation, PDGF receptor phosphorylation, and mitogen-activated protein kinase activity, of these effectors, only arachidonic acid release was further enhanced by simultaneous ET and PDGF-BB treatment. These results link proliferative and hypertrophic signal transduction pathways in these cells and suggest that arachidonic acid or its metabolites mediate the observed effects of ET on PDGF-BB-stimulated vascular smooth muscle cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document