Enhanced sensitivity of diabetic hearts to alpha-adrenoceptor stimulation

1983 ◽  
Vol 245 (5) ◽  
pp. H808-H813 ◽  
Author(s):  
S. E. Downing ◽  
J. C. Lee ◽  
R. R. Fripp

Inotropic responses to alpha-adrenergic stimulation with methoxamine were compared in 12 normal (N) and 12 diabetic (Db) lambs. Diabetes was produced by giving alloxan monohydrate (150 mg/kg iv). Measurements of maximal rate of rise of left ventricular pressure (dP/dtmax), left ventricular end-diastolic pressure (LVEDP), coronary flow, and myocardial O2 consumption were made simultaneously in hemodynamically controlled preparations. All animals were subjected to ganglionic blockade (tetraethylammonium chloride, 100 mg) and beta1-adrenergic blockade (practolol, 4 mg/kg). Methoxamine was given in incremental doses ranging from 0.4 to 6.0 mg/kg. dP/dtmax increased progressively to 126 +/- 4% of initial values in N. However, the increase was twice as large (150 +/- 4%) in the diabetics (P less than 0.005). LVEDP fell in both groups. These changes were abolished by phentolamine (2 mg/kg). Inotropic responses to methoxamine in lambs 2 and 3 wk after induction of diabetes did not differ from those with acute (2 days) diabetes. Dose-response curves obtained by infusing Ca2+ (2-8 mg X min-1 X kg-1) were identical in N and Db. It is concluded that lamb myocardium possesses an alpha-adrenergic receptor system that is stimulated by methoxamine in a dose-dependent manner and blocked by phentolamine. Db hearts are supersensitive to alpha-receptor activation. The mechanistic basis for this latter finding has not been examined but may relate to altered receptor density or nucleotide regulation.

1978 ◽  
Vol 234 (2) ◽  
pp. H157-H162
Author(s):  
L. D. Horwitz ◽  
D. F. Peterson ◽  
V. S. Bishop

The effect of brief periods of regional ischemia upon left ventricular pump performance was studied in nine dogs standing quietly at rest and during running exercise on a treadmill. Transient occlusions of the left circumflex coronary artery resulted in increase in heart rate at rest (+30 beats/min) but not during exercise. Other changes due to occlusion were similar at rest and during exercise and included decreases in stroke volume (-25% standing, -23% running); in dP/dt max, the maximum first derivative of the left ventricular pressure (-20% standing or running); and in left ventricular peak systolic pressure (-13% standing, -21% running); and rises in left ventricular end-diastolic pressure (+4.5 mmHg standing, +6.3 mmHg running). Cardiac output was unchanged by occlusions at rest but fell (-18%) during occlusions while the dogs were running. Propranolol reduced absolute levels of cardiac performance during exercise occlusions but had no effect at rest. Inotropic agents with ischemia had some effects at rest but did not alter exercise hemodynamics. It is concluded that integrated left ventricular function during ischemia is not impaired by exercise, probably because of beta-adrenergic stimulation of nonischemic myocardium.


1987 ◽  
Vol 65 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Leonard B. Bell ◽  
D. Fred Peterson

Factors known to influence left ventricular contractility include preload, afterload, circulating catecholamine concentration, efferent sympathethic discharge, and heart rate. Heart rate influences have been primarily determined in the dog, whereas the influence of heart rate in smaller mammals has not been determined. Eight pentobarbital-anesthetized rabbits were instrumented to measure electrocardiogram, heart rate, left ventricular pressure, end-diastolic pressure, dP/dt, and mean and pulsatile aortic pressures. Systematic bradycardia was induced by stimulating the peripheral end of the sectioned right vagus nerve. Between 293 and 235 beats/min, there was no change in (dP/dt)max as heart rate was decreased. Below this range there was a direct relationship between (dP/dt)max and heart rate. Preload remained unchanged down to 132 beats/min. There was a small but significant decrease in afterload (0.09 mmHg∙beat−1∙min−1; 1 mmHg = 133.32 Pa) throughout the decrease in heart rate. Infusion of propranolol (2.0 mg/kg) produced no marked change in the heart rate – (dP/dt)max relationship, although both resting heart rate and (dP/dt)max were reduced. This study demonstrates that (dP/dt)max is not influenced by changes in heart rate above 235 beats/min in the pentobarbital-anesthetized rabbit. These results differ from findings in other animals, and demonstrate that species and heart rate ranges must be considered when drawing conclusions regarding (dP/dt)max as a reliable index of contractility.


1975 ◽  
Vol 228 (5) ◽  
pp. 1555-1561 ◽  
Author(s):  
EA Beierholm ◽  
RN Grantham ◽  
DD O'Keefe ◽  
MB Laver ◽  
WM Daggett

Extracellular pH changes were produced in dogs with tris (hydroxy-methyl)-aminomethane (Tris) or NaHCO3 in the presence or absence of hypoxemia and before and after beta-adrenergic blockade with propranolol. Ventricular performance (VP) was evaluated by measurement of maximum rate of rise of left ventricular pressure (dp/dt max) and left ventricular end-diastolic pressure in the canine right heart bypass preparation with aortic pressure, heart rate, and cardiac output held constant. Low pH diminished VP. Hypoxemia did not alter VP within the pH, suggesting that decreased V observed with acidosis before propranolol was due primarily to decreased myocardial response to catecholamines. Increase of pH with Tris increased VP significantly more than with NaHCO3. Beta blockade diminished the response of VP to Tris at a high pH;prior administration of reserpine abolished the inotropic effect of Tris. The data suggest that Tris can influence VP independent of its effect on pH. This effect is probably mediated by the interaction between endogenous catecholamines and myocardial beta receptors.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Figueroa-Valverde Lauro ◽  
Díaz-Cedillo Francisco ◽  
García-Cervera Elodia ◽  
Pool-Gómez Eduardo ◽  
López-Ramos Maria ◽  
...  

Some reports indicate that several steroid derivatives have activity at cardiovascular level; nevertheless, there is scarce information about the activity exerted by the testosterone derivatives on cardiac injury caused by ischemia/reperfusion (I/R). Analyzing these data, in this study, a new testosterone derivative was synthetized with the objective of evaluating its effect on myocardial injury using an ischemia/reperfusion model. In addition, perfusion pressure and coronary resistance were evaluated in isolated rat hearts using the Langendorff technique. Additionally, molecular mechanism involved in the activity exerted by the testosterone derivative on perfusion pressure and coronary resistance was evaluated by measuring left ventricular pressure in the absence or presence of the following compounds: flutamide, prazosin, metoprolol, nifedipine, indomethacin, and PINANE TXA2. The results showed that the testosterone derivative significantly increasesP=0.05the perfusion pressure and coronary resistance in isolated heart. Other data indicate that the testosterone derivative increases left ventricular pressure in a dose-dependent manner (0.001–100 nM); however, this phenomenon was significantly inhibitedP=0.06by indomethacin and PINANE-TXA2  P=0.05at a dose of 1 nM. In conclusion, these data suggest that testosterone derivative induces changes in the left ventricular pressure levels through thromboxane receptor activation.


Author(s):  
Figueroa-Valverde Lauro ◽  
López-Ramos Maria ◽  
Díaz-Cedillo Francisco ◽  
Rosas-Nexticapa Marcela ◽  
Mateu-Armad Maria Virginia ◽  
...  

Background: Several drugs with inotropic activity have been synthesized; however, there is very little information on biological activity exerted by steroid derivatives in the cardiovascular system. Objective: The aim of this research was to prepare a steroid-pyridine derivative to evaluate the effect it exerts on left ventricular pressure and characterize its molecular interaction. Methods: The first stage was carried out through the synthesis of a steroid-pyridine derivative using some chemical strategies. The second stage involved the evaluation of the biological activity of the steroid-pyridine derivative on left ventricular pressure using a model of heart failure in the absence or presence of the drugs, such as flutamide, tamoxifen, prazosin, metoprolol, indomethacin, and nifedipine. Results: The results showed that steroid-pyridine derivative increased left ventricular pressure in a dose-dependent manner (0.001-100 nM); however, this phenomenon was significantly inhibited only by nifedipine at a dose of 1 nM. These results indicate that positive inotropic activity produced by the steroid-pyridine derivative was via calcium channel activation. Furthermore, the biological activity exerted by the steroid-pyridine derivative on the left ventricle produces changes in cAMP concentration. Conclusion: It is noteworthy that positive inotropic activity produced by this steroid-pyridine derivative involves a different molecular mechanism compared to other positive inotropic drugs. Therefore, this steroid could be a good candidate for the treatment of heart failure.


2012 ◽  
Vol 13 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Kulwinder Singh ◽  
Kuldeepak Sharma ◽  
Manjeet Singh ◽  
PL Sharma

Hypothesis: This study was designed to investigate the cardio-renal protective effect of AVE-0991, a non-peptide Mas-receptor agonist, and A-779, a Mas-receptor antagonist, in diabetic rats. Materials and methods: Wistar rats treated with streptozotocin (50 mg/kg, i.p., once), developed diabetes mellitus after 1 week. After 8 weeks, myocardial functions were assessed by measuring left ventricular developed pressure (LVDP), rate of left ventricular pressure development (d p/d tmax), rate of left ventricular pressure decay (d p/d tmin) and left ventricular end diastolic pressure (LVEDP) on an isolated Langendorff’s heart preparation. Further, mean arterial blood pressure (MABP) was measured by using the tail-cuff method. Assessment of renal functions and lipid profile was carried out using a spectrophotometer. Results: The administration of streptozotocin to rats produced persistent hyperglycaemia, dyslipidaemia and hypertension which consequently produced cardiac and renal dysfunction in 8 weeks. AVE0991 treatment produced cardio-renal protective effects, as evidenced by a significant increase in LVDP, d p/d tmax, d p/d tmin and a significant decrease in LVEDP, BUN, and protein urea. Further, AVE-0991 treatment for the first time has been shown to reduce dyslipidaemia and produced antihyperglycaemic activity in streptozotocin-treated rats. However, MABP and creatinine clearance remained unaffected with AVE-0991 treatment. Conclusions: AVE-0991 produced cardio-renal protection possibly by improving glucose and lipid metabolism in diabetic rats, independent of its blood pressure lowering action.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Satoshi Takeda ◽  
Hiroshi Yoshida ◽  
Takeki Ogawa

AIM: A cytosolic free calcium is an important regulator of cardiac metabolism and contractility, and an increased [Ca2+]i has been implicated in irreversible cell injury and contractile dysfunction. We investigated intracellular calcium ([Ca2+]i) dynamics during cardiac arrest, especially in pulseless electrical activity (PEA) and asystole. METHODS: Rat hearts (n=18) were perfused with a Langendorff system and loaded with Fura-2/AM, as a [Ca2+]i marker, and BCECF/AM, as a pHi marker. Surface fluorescence of the heart was recorded with an intracellular ion analyzer. A latex balloon was inserted into the left ventricle to monitor left ventricular pressure. Sustained normo-thermic cardiac arrest was induced for 20 min by clamping the aortic cannula. RESULTS: After clamping (cardiac arrest), the left ventricular developed pressure decreased significantly, from 84.3±11 mmHg to 3.88±0.7 mmHg (p<0.01) at 2min. The rhythm was PEA in all cases in this period, followed by asystole. The amplitude of the [Ca2+]i transient (0.30±0.03) was maintained at 2 min, but further significant increases were observed in both systolic (1.14±0.04, p<0.01) and diastolic levels of [Ca2+]i (0.84±0.04, p<0.05), when compared with pre-arrest levels. The [Ca2+]i transient disappeared 4.7±0.6 min. The diastolic [Ca2+]i increased gradually after 5 min to 20 min. This diastolic [Ca2+]i increase was parallel with the increase in left ventricular end diastolic pressure (indicated ischemic contracture). The pHi increased (to 7.6±1.0) immediately after clamping. Thereafter pHi decreased rapidly and remained steady (at pH 6.6±0.6). CONCLUSIONS: The change in the [Ca2+]i-pressure relationship rather than change in the amplitude of the [Ca2+]i transient was the main contributor in the early cardiac arrest phase. The diastolic [Ca2+]i increase might induce irreversible cell injury in the late cardiac arrest phase.


1986 ◽  
Vol 250 (1) ◽  
pp. R1-R4
Author(s):  
T. G. Waldrop ◽  
M. Bielecki ◽  
W. J. Gonyea ◽  
J. H. Mitchell

Static exercise performed by conscious cats elicits increases in heart rate (HR), left ventricular systolic pressure (LVSP), and the maximal rate of left ventricular pressure development [LV(dP/dt)max]. The increased HR is mediated primarily by withdrawal of parasympathetic tone, whereas a beta-adrenergic mechanism is responsible for the LV(dP/dt)max increase. In the present study the cardiovascular responses to static exercise in awake cats was recorded before and after alpha-adrenergic blockade. Pressure transducers were implanted into the left ventricle of cats who had been trained operantly to perform static exercise. Significant increases in LVSP, LV(dP/dt)max and HR occurred in all cats during static exercise before blockade. In contrast, alpha-adrenergic blockade (phentolamine, 2.5 mg/kg iv) abolished the exercise-induced increase in LVSP but did not prevent increases in HR and LV(dP/dt)max. The cats performed fewer exercise bouts per day during alpha-blockade than when unblocked. We conclude that an alpha-adrenergic mechanism mediates the increase in LVSP in response to static exercise in conscious cats.


2000 ◽  
Vol 89 (5) ◽  
pp. 2041-2048 ◽  
Author(s):  
Masayuki Takamura ◽  
Robert Parent ◽  
Peter Cernacek ◽  
Michel Lavallée

We hypothesized that endothelin (ET) release during exercise may be triggered by α-adrenergic-receptor activation and thereby influence coronary hemodynamics and O2 metabolism in dogs. Exercise resulted in coronary blood flow increases (to 1.88 ± 0.26 from 1.10 ± 0.12 ml · min−1 · g−1) and in a fall ( P < 0.01) in coronary sinus O2saturation (17.4 ± 1.5 to 9.6 ± 0.7 vol%), whereas myocardial O2 consumption (MV˙o 2) increased (109 ± 13% from 145 ± 16 μl O2 · min−1 · g−1). Tezosentan, a dual ETA/ETB-receptor blocker, slightly reduced mean arterial pressure (MAP) and increased heart rate throughout exercise. The relationship between coronary sinus O2 saturation and MV˙o 2 was shifted upward ( P < 0.05) after tezosentan administration; i.e., as MV˙o 2 increased during exercise, coronary sinus O2 saturation was disproportionately higher after ET-receptor blockade. After propranolol, tezosentan resulted in significant decreases ( P < 0.05) in left ventricular pressure, the first derivative of left ventricular pressure over time, and MAP during exercise. As MV˙o 2 increased during exercise, coronary sinus O2 saturation levels after tezosentan became superimposable over those observed before ET-receptor blockade. Thus dual blockade of ETA/ETBreceptors alters coronary hemodynamics and O2 metabolism during exercise, but ET activity failed to increase beyond baseline levels.


Sign in / Sign up

Export Citation Format

Share Document