Hemodynamic alterations in chronically conscious unrestrained diabetic rats

1987 ◽  
Vol 252 (5) ◽  
pp. H900-H905 ◽  
Author(s):  
L. F. Carbonell ◽  
M. G. Salom ◽  
J. Garcia-Estan ◽  
F. J. Salazar ◽  
M. Ubeda ◽  
...  

Important cardiovascular dysfunctions have been described in streptozotocin (STZ)-diabetic rats. To determine the influence of these changes on the hemodynamic state and whether insulin treatment can avoid them, different hemodynamic parameters, obtained by the thermodilution method, were studied in STZ-induced (65 mg/kg) diabetic male Wistar rats, as well as in age-control, weight-control, and insulin-treated diabetic ones. All rats were examined in the conscious, unrestrained state 12 wk after induction of diabetes or acidified saline (pH 4.5) injection. At 12 wk of diabetic state most important findings were normotension, high blood volume, bradycardia, increase in stroke volume, cardiac output, and cardiosomatic ratio, and decrease in total peripheral resistance and cardiac contractility and relaxation (dP/dtmax and dP/dtmin of left ventricular pressure curves). The insulin-treated diabetic rats did not show any hemodynamic differences when compared with the control animals. These results suggest that important hemodynamic alterations are present in the chronic diabetic state, possibly conditioning congestive heart failure. These alterations can be prevented by insulin treatment.

1994 ◽  
Vol 72 (10) ◽  
pp. 1245-1251 ◽  
Author(s):  
Fred D. Romano ◽  
Stephen J. Kopp ◽  
June T. Daar ◽  
Cynthia A. Smith

The aim of this study was to test the hypothesis that the antiadrenergic action of adenosine is reduced in diabetes. This was determined by evaluating the effect of experimental diabetes mellitus on the in vivo myocardial antiadrenergic action of cyclopentyladenosine, an adenosine A1- receptor agonist. Changes in heart rate and ventricular performance in response to infusion of dobutamine, a β1-adrenergic agonist, were determined in the absence and presence of cyclopentyladenosine, in anesthetized, 10- to 12-week male diabetic (60 mg/kg streptozotocin), insulin-treated diabetic and control rats. Intravenous dobutamine (16 μg/kg) increased +dP/dtmax and −dP/dtmax in control rats from 7 706 ± 553 and 5 449 ± 403 mmHg/s (1 mmHg = 133.3 Pa) to 19 170 ± 465 and 8 855 ± 317 mmHg/s, respectively. In diabetic rats dobutamine increased +dP/dtmax and −dP/dtmax from 5 733 ± 541 and 4 016 ± 426 to 15 015 ± 1 521 and 7 039 ± 809 mmHg/s, respectively. Cyclopentyladenosine significantly attenuated dobutamine-stimulated increases in +dP/dtmax and −dP/dtmax in both control and diabetic rats in a dose-dependent (0.1–3.0 μg/kg) manner. Cyclopentyladenosine potency to attenuate dobutamine-enhanced +dP/dtmax was reduced significantly (p < 0.05) in diabetic rats compared with controls (ID50, 1.07 vs. 0.59 μg/kg, respectively) with no change in efficacy. The magnitude of cyclopentyladenosine inhibition of dobutamine-enhanced −dP/dtmax was greater in control than diabetic rats (81 vs. 54%, respectively), but ID50 values were not different. Insulin treatment of diabetic rats prevented the observed changes. These data suggest that the antiadrenergic action of adenosine is compromised in diabetes and that this may contribute to the development of diabetic cardiomyopathy.Key words: adenosine, dobutamine, ventricle, left ventricular pressure, streptozotocin.


1986 ◽  
Vol 64 (6) ◽  
pp. 818-824 ◽  
Author(s):  
Efrain Reisin

A number of studies have established a close association between increased body mass and elevated blood pressure. The presence of obesity in hypertensive subjects is associated with some hemodynamic, metabolic, and endocrinic characteristics: an increased intravascular volume with a high intracellular body water/interstitial fluid volume ratio, increased cardiac output, stroke volume, and left ventricular work while peripheral resistance was reduced or normal. Weight loss of at least 10 kg can reduce blood pressure independently of changes in sodium intake in obese persons of both sexes with mild, moderate, or severe high blood pressure. The fall in arterial pressure in obese hypertensives after weight loss may reverse many of the previously mentioned altered findings and underscore previous epidemiological studies that have shown that weight control could be an important measure in the treatment of hypertension.


1977 ◽  
Vol 43 (6) ◽  
pp. 936-941 ◽  
Author(s):  
W. L. Sembrowich ◽  
M. B. Knudson ◽  
P. D. Gollnick

The effect of 18 wk of treadmill running on skeletal muscle metabolism and myocardial function of normal and myopathic hamsters was examined. BIO 14.6 hamsters could tolerate an exercise intensity of about 18 m/min for 40 min, 5 days/wk. Further increases in speed or number of bouts per day resulted in a falloff in performance. Normal hamsters could tolerate higher speeds and longer exercise bouts. Exercise did not change the severity of lesions of either the heart or skeletal muscle of the myopathic hamsters. A training effect was evidenced by increased succinate dehydrogenase activity in the soleus muscle. Cardiac function was evaluated as contractility measured from left ventricular pressure curves and expressed as (dP/dt)/kP. The results suggested that cardiac contractility was not as severely depressed in the trained BIO 14.6 strain of hamsters as in nontrained controls. However, (dP/dt)/kP was lower in the trained myopathic animals than in normal hamsters. ATP, CP, and glycogen levels were lower in myopathic hamsters with the lowest values occurring in the trained group. These data demonstrate that the BIO 14.6 strain of hamster can tolerate exercise training and that such training may have a positive effect on cardiac function.


2012 ◽  
Vol 13 (3) ◽  
pp. 334-340 ◽  
Author(s):  
Kulwinder Singh ◽  
Kuldeepak Sharma ◽  
Manjeet Singh ◽  
PL Sharma

Hypothesis: This study was designed to investigate the cardio-renal protective effect of AVE-0991, a non-peptide Mas-receptor agonist, and A-779, a Mas-receptor antagonist, in diabetic rats. Materials and methods: Wistar rats treated with streptozotocin (50 mg/kg, i.p., once), developed diabetes mellitus after 1 week. After 8 weeks, myocardial functions were assessed by measuring left ventricular developed pressure (LVDP), rate of left ventricular pressure development (d p/d tmax), rate of left ventricular pressure decay (d p/d tmin) and left ventricular end diastolic pressure (LVEDP) on an isolated Langendorff’s heart preparation. Further, mean arterial blood pressure (MABP) was measured by using the tail-cuff method. Assessment of renal functions and lipid profile was carried out using a spectrophotometer. Results: The administration of streptozotocin to rats produced persistent hyperglycaemia, dyslipidaemia and hypertension which consequently produced cardiac and renal dysfunction in 8 weeks. AVE0991 treatment produced cardio-renal protective effects, as evidenced by a significant increase in LVDP, d p/d tmax, d p/d tmin and a significant decrease in LVEDP, BUN, and protein urea. Further, AVE-0991 treatment for the first time has been shown to reduce dyslipidaemia and produced antihyperglycaemic activity in streptozotocin-treated rats. However, MABP and creatinine clearance remained unaffected with AVE-0991 treatment. Conclusions: AVE-0991 produced cardio-renal protection possibly by improving glucose and lipid metabolism in diabetic rats, independent of its blood pressure lowering action.


1965 ◽  
Vol 209 (6) ◽  
pp. 1081-1088 ◽  
Author(s):  
G. Ascanio ◽  
F. Barrera ◽  
E. V. Lautsch ◽  
M. J. Oppenheimer

Intracoronary administration of hexachlorotetrafluorobutane (Hexa) into non-thoracotomized dogs produced a statistically significant decrease in left ventricular systolic pressure (LVSP), mean femoral arterial blood pressure (MFAP), first derivative of left ventricular pressure pulse (dP/d t), total peripheral resistance (TPR), and cardiac output (C.O.) lasting up to 1 hr after injection. Femoral vascular resistance decreased during the first 3 min after production of necrobiosis. Fifty percent of the dogs died of ventricular fibrillation (VF) after Hexa infarction. Prereserpinized dogs did not show significant changes in the parameters which were significantly changed in normal dogs after Hexa necrobiosis except in the case of VF which was almost absent in this group. Bilateral vagotomy prior to Hexa administration prevented most hemodynamic changes after necrobiosis whereas atropine did not. Bilateral vagotomy and atropine 1 hr after necrobiosis increased MFAP, dP/d t, LVSP, C.O., and TPR. Apparently excitatory efferent sympathetic activity on heart and femoral arterial vessels is reflexly inhibited by the effects of intracoronary injection of Hexa. The afferent pathway is via the vagus nerve.


1998 ◽  
Vol 275 (1) ◽  
pp. H122-H130 ◽  
Author(s):  
Vincent M. Figueredo ◽  
Kevin C. Chang ◽  
Anthony J. Baker ◽  
S. Albert Camacho

Long-standing heavy alcohol consumption acts as a chronic stress on the heart. It is thought that alcohol-induced changes of contractility are due to altered Ca2+ handling, but no measurements of cytosolic Ca2+([Ca2+]c) after chronic alcohol exposure have been made. Therefore experiments were performed to determine whether alcohol-induced changes in contractility are due to altered Ca2+ handling by measuring [Ca2+]c(indo 1) in hearts from rats drinking 36% ethanol for 7 mo and age-matched controls. Peak left ventricular pressure was depressed (−16%), whereas rates of contraction (12%) and relaxation (14–20%) were faster in alcohol-exposed hearts. Systolic [Ca2+]c(808 ± 45 vs. 813 ± 45 nM), diastolic [Ca2+]c(195 ± 11 vs. 193 ± 10 nM), and rates of [Ca2+]crise and decline were the same in alcohol-exposed and control hearts. Protein levels of Ca2+-handling proteins, sarcoplasmic reticulum Ca2+-ATPase and phospholamban, were the same in myocytes isolated from alcohol-exposed and control hearts (SDS-polyacrylamide gel). These data suggest that chronic alcohol-induced contractile changes are not due to altered Ca2+ handling but may be due to changes at the level of the myofilament. As a first step in elucidating the mechanism(s) of alcohol-induced changes at the myofilament, we assessed myosin heavy chain (MHC) isoform content (SDS-polyacrylamide gel). α-MHC was decreased relative to β-MHC ( a/ a+ b = 0.55 ± 0.03 vs. 0.66 ± 0.02; P < 0.02) in alcohol-exposed hearts, which cannot account for the observed alcohol-induced contractile changes. In conclusion, changes of myocardial contractility due to chronic alcohol exposure do not result from altered Ca2+ handling but from changes at the level of the myofilament that do not involve MHC isoform shifts.


1984 ◽  
Vol 247 (6) ◽  
pp. H978-H983 ◽  
Author(s):  
W. L. Maughan ◽  
K. Sunagawa ◽  
K. Sagawa

The mean left ventricular pressure-flow relationship (Pv-Fv), determined under a constant preload and variable peripheral resistance, has been proposed as a quantitative representation of ventricular pump function (9). We determined the Pv-Fv relation in seven isolated cross-perfused canine hearts by varying resistance of a simulated arterial load in five steps from 6.0 to 0.375 mmHg X s X ml-1 while keeping end-diastolic volume, inotropic state, compliance, and characteristic impedance at various constant values. All of the 27 Pv-Fv relations thus determined were moderately nonlinear. Varying end-diastolic volume at three levels shifted the relation curve in an approximately parallel fashion (P less than 0.0001). At three levels of inotropic state (mean LVP of isovolumic contractions 34.3 +/- 8.2, 48.0 +/- 6.3, and 59.2 +/- 9.6 mmHg), the Pv-Fv relation shifted with predominantly a slope change (P less than 0.0001). Changing compliance at three levels (0.2, 0.4, and 0.8 ml/mmHg) caused a statistically significant but quantitatively small crossover of the Pv-Fv curves (P less than 0.0001). Changing characteristic impedance to 0.1, 0.2, and 0.4 mmHg X s X ml-1 caused a highly significant (P less than 0.0001) divergence of Pv-Fv relation over the high Fv range. We conclude that this sensitivity of the Pv-Fv relation to characteristic impedance limits its use as a contractility index.


1985 ◽  
Vol 107 (4) ◽  
pp. 361-367 ◽  
Author(s):  
E. Rooz ◽  
T. F. Wiesner ◽  
R. M. Nerem

A computer model and numerical method for calculating left epicardial coronary blood flow has been developed. This model employs a finite-branching geometry of the coronary vasculature and the one-dimensional, unsteady equations for flow with friction. The epicardial coronary geometry includes the left main and its bifurcation, the left anterior descending and left circumflex coronary arteries, and a selected number of small branches. Each of the latter terminate in an impedance, whose resistive component is related to intramyocardial compression through a linear dependence on left ventricular pressure. The elastic properties of the epicardial arteries are taken to be non-linear and are prescribed by specifying the local small-disturbance wave speed. The model allows for the incorporation of multiple stenoses as well as aorto-coronary bypasses. Calculations using this model predict pressure and flow waveform development and allow for the systematic investigation of the dependence of coronary flow on various parameters, e.g., peripheral resistance, wall properties, and branching pattern, as well as the presence of stenoses and bypass grafts. Reasonable comparison between calculations and earlier experiments in horses has been obtained.


1983 ◽  
Vol 245 (6) ◽  
pp. E560-E567 ◽  
Author(s):  
D. R. Bielefeld ◽  
C. S. Pace ◽  
B. R. Boshell

An alteration in calcium metabolism in cardiac muscle was observed in diabetic rats 3 mo after streptozotocin treatment. Depression of cardiac output and left ventricular pressure development were more sensitive to decreased extra-cellular calcium in hearts from diabetic than from control animals and occurred within the normal physiological range of freely ionized serum calcium. This decrease in calcium sensitivity was not present after 2 wk of diabetes. In vivo treatment with insulin for 1 mo completely reversed the effect. Addition of octanoate (0.3 mM) to the perfusate of isolated hearts completely reversed the defect, whereas epinephrine (25 nM) only partially reversed it. When the glucose concentration of the perfusate was decreased, the function of diabetic hearts declined and was further diminished at decreasing calcium levels. Hearts from normal rats were unaffected. These results suggest that there is a defect in calcium metabolism or flux in the chronic diabetic rat heart.


Sign in / Sign up

Export Citation Format

Share Document