Area postrema and differential reflex effects of vasopressin and phenylephrine in rats

1990 ◽  
Vol 258 (4) ◽  
pp. H1255-H1259 ◽  
Author(s):  
J. D. Peuler ◽  
G. L. Edwards ◽  
P. G. Schmid ◽  
A. K. Johnson

In normal rats, baroreflex inhibitions of heart rate (HR) and splanchnic but not lumbar sympathetic neural activity (SNA) are greater when mean arterial pressure (MAP) is increased by intravenous infusion of arginine vasopressin (AVP) compared with phenylephrine (PE) or methoxamine. In normal rabbits, baroreflex inhibitions of HR and lumbar and renal SNA are all greater when MAP is increased by AVP vs. PE. The differential reflex bradycardic and renal sympathoinhibitory effects of AVP vs. PE in rabbits require an intact area postrema. To determine whether differential reflex effects of AVP vs. PE in rats is selective for HR or inclusive of renal SNA and to examine the role of the rat area postrema in such action, we monitored HR and renal SNA in normal (sham operated, n = 8) and area postrema-lesioned (APX, n = 8) rats under chloralose anesthesia during slow increases in MAP (less than 0.3 mmHg/s; 3 min) induced intravenously by AVP (0-16 mU.kg-1.min-1) and by PE (0-8 micrograms.kg-1.min-1). Reflex inhibition of HR (-delta betas.min-1.delta mmHg-1) was greater when MAP was increased by AVP vs. PE in normal rats (-2.7 +/- 0.5 vs. -1.7 +/- 0.1, P less than 0.05), and this difference was absent in APX rats (-2.5 +/- 0.5 vs. +/- -2.2 +/- 0.4). Similarly, maximum bradycardia (-delta beats/min) by AVP vs. PE was greater in normal rats (-64 +/- 8 vs. -48 +/- 7, P less than 0.05) but not in APX rats (-53 +/- 5 vs. -52 +/- 6).(ABSTRACT TRUNCATED AT 250 WORDS)

1986 ◽  
Vol 250 (1) ◽  
pp. F92-F96 ◽  
Author(s):  
J. Schwartz ◽  
I. A. Reid

The nature of the activity of vasopressin that is responsible for the inhibition of renin secretion was studied in normally hydrated conscious dogs using intravenous infusions of vasopressin and analogues of vasopressin with selective antidiuretic and vasoconstrictor activity. Vasopressin (1.0 ng . kg-1 . min-1) increased mean arterial pressure (MAP) from 106 +/- 2 to 115 +/- 3 mmHg (P less than 0.05) and decreased heart rate (HR) from 81 +/- 6 to 56 +/- 5 beats/min (P less than 0.001). Plasma renin activity (PRA) decreased from 4.4 +/- 1.1 to 2.4 +/- 0.8 ng . ml-1 . 3 h-1 (P less than 0.05). A specific antagonist of the vasoconstrictor activity of vasopressin, d(CH2)5MeTyrAVP (10 micrograms/kg), completely blocked the cardiovascular and renin responses to vasopressin. A selective vasoconstrictor agonist, 2-phenylalanine-8-ornithine oxytocin (1.0 ng . kg-1 . min-1), increased MAP from 112 +/- 4 to 128 +/- 6 mmHg (P less than 0.001) and decreased HR from 69 +/- 3 to 47 +/- 4 beats/min (P less than 0.001). PRA decreased from 5.5 +/- 1.1 to 2.7 +/- 0.2 ng . ml-1 X 3 h-1 (P less than 0.001). In contrast, a selective antidiuretic agonist, 1-deamino-8-D-arginine vasopressin (1.0 ng . kg-1 . min-1) did not alter PRA, MAP, or HR. These results demonstrate that the acute inhibition of renin secretion by vasopressin in normally hydrated conscious dogs is due to vasoconstrictor rather than antidiuretic activity.


2018 ◽  
Vol 596 (8) ◽  
pp. 1373-1384 ◽  
Author(s):  
Thomas J. Hureau ◽  
Joshua C. Weavil ◽  
Taylor S. Thurston ◽  
Ryan M. Broxterman ◽  
Ashley D. Nelson ◽  
...  

1983 ◽  
Vol 244 (1) ◽  
pp. R74-R77 ◽  
Author(s):  
J. Schwartz ◽  
I. A. Reid

The role of vasopressin in the regulation of blood pressure during water deprivation was assessed in conscious dogs with two antagonists of the vasoconstrictor activity of vasopressin. In water-replete dogs, vasopressin blockade caused no significant changes in mean arterial pressure, heart rate, plasma renin activity (PRA), or plasma corticosteroid concentration. In the same dogs following 48-h water deprivation, vasopressin blockade increased heart rate from 85 +/- 6 to 134 +/- 15 beats/min (P less than 0.0001), increased cardiac output from 2.0 +/- 0.1 to 3.1 +/- 0.1 1/min (P less than 0.005), and decreased total peripheral resistance from 46.6 +/- 3.1 to 26.9 +/- 3.1 U (P less than 0.001). Plasma renin activity increased from 12.4 +/- 2.2 to 25.9 +/- 3.4 ng ANG I X ml-1 X 3 h-1 (P less than 0.0001) and plasma corticosteroid concentration increased from 3.2 +/- 0.7 to 4.9 +/- 1.2 micrograms/dl (P less than 0.05). Mean arterial pressure did not change significantly. When the same dogs were again deprived of water and pretreated with the beta-adrenoceptor antagonist propranolol, the heart rate and PRA responses to the antagonists were attenuated and mean arterial pressure decreased from 103 +/- 2 to 91 +/- 3 mmHg (P less than 0.001). These data demonstrate that vasopressin plays an important role in blood pressure regulation during water deprivation in conscious dogs.


1989 ◽  
Vol 257 (4) ◽  
pp. R762-R764 ◽  
Author(s):  
T. D. Williams ◽  
J. R. Seckl ◽  
S. L. Lightman

The act of drinking causes a fall in plasma arginine vasopressin (AVP) concentration that precedes changes in plasma osmolality. To investigate the specificity of this drinking stimulus on hormone secretion, six volunteers (5 male, 1 female, aged 22-39 yr) were water deprived for 36 h and then drank 15 ml/kg water at 10-12 degrees C using 15-20 swallowing actions/min over 3.5 +/- 0.5 min (mean +/- SE). This caused a fall in plasma AVP from 4.5 +/- 0.7 to 3.2 +/- 0.5 pmol/l (P less than 0.05) and in thirst (by 5.7 +/- 0.6 on a 10-cm linear analog scale) (P less than 0.05) 5 min after drinking. No significant changes occurred in mean arterial pressure, heart rate, or plasma atrial natriuretic peptide (ANP) concentration. A second study was undertaken to determine whether the reflex inhibition of AVP secretion is activated simply by the act of swallowing regardless of the volume of liquid consumed. The six volunteers were water deprived for 36 h and then sipped and swallowed 1 ml/kg water at 10-12 degrees C using 15-20 swallowing actions/min over 3.0 +/- 0.1 min. There was no change in plasma AVP concentration, although thirst was reduced by 2.3 +/- 0.6 (P less than 0.05) at 5 min. Plasma AVP 10 min after sipping and swallowing (4.2 +/- 0.8 pmol/l) was significantly greater than at 10 min after drinking 15 ml/kg (2.8 +/- 0.5 pmol/l) (P less than 0.05) despite the fact that plasma osmolality at this stage was similar in both studies. We conclude that the drinking-mediated reflex inhibition of AVP secretion in humans is dependent on swallowing an adequate volume and is not accompanied by changes in hemodynamics or in plasma ANP concentration.


1990 ◽  
Vol 258 (6) ◽  
pp. R1472-R1478 ◽  
Author(s):  
K. M. Skoog ◽  
M. L. Blair ◽  
C. D. Sladek ◽  
W. M. Williams ◽  
M. L. Mangiapane

Previous studies have indicated that the area postrema (AP) of the rat is necessary for the development of chronic angiotensin-dependent hypertension. The present study assesses the role of the AP in the maintenance of arterial pressure during hemorrhage. Sprague-Dawley rats were given sham or AP lesions 1 wk before the experiment. They were instrumented with femoral arterial and venous catheters 2 days before the experiment. On the day of the experiment, base-line mean arterial pressure (MAP) was measured for 1 h before hemorrhage. During the following 45 min, each rat was subjected to one 7-ml/kg hemorrhage every 15 min for a total of three hemorrhages. MAP was monitored by computerized data acquisition. As shown previously, MAP was slightly but significantly lower in AP-lesion rats compared with sham-lesion rats before the hemorrhage procedure. In AP-lesion rats, hemorrhage resulted in a significantly greater fall in arterial pressure than in sham-lesion rats. In spite of larger drops in pressure in AP-lesion rats, hemorrhage caused equivalent increases in plasma renin and vasopressin in both groups. In AP-lesion rats compared with sham-lesion rats, significant bradycardia was present before hemorrhage. Hemorrhage caused bradycardia in both sham- and AP-lesion rats relative to the prehemorrhage heart rates, but AP-lesion rats showed greater bradycardia than did sham-lesion rats during every time period. We conclude that the AP may play an important role in the defense of arterial pressure against hemorrhage.


2006 ◽  
Vol 104 (4) ◽  
pp. 734-741 ◽  
Author(s):  
Pascale Dewachter ◽  
Valérie Jouan-Hureaux ◽  
Isabelle Lartaud ◽  
Gaëlle Bello ◽  
Nicole de Talancé ◽  
...  

Background Arginine vasopressin (AVP) and terlipressin were proposed as alternatives to catecholamines in shock states characterized by decreased plasma AVP concentrations. The endogenous plasma AVP profile in anaphylactic shock is unknown. In an ovalbumin-sensitized anesthetized anaphylactic shock rat model, the authors investigated (1) plasma AVP concentrations and (2) the dose versus mean arterial pressure response for exogenous AVP and terlipressin and compared them with those of epinephrine. Methods In a first series of rats (n = 12), endogenous plasma AVP concentrations were compared with a model of pharmacologically induced hypotension (nicardipine, n = 12). A second series was randomly assigned to three groups (AVP, n = 7; terlipressin, n = 7; epinephrine, n = 7) and dose (AVP: 8 doses, 0.03-100 U/kg; terlipressin: 7 doses, 0.03-30 microg/kg; epinephrine: 7 doses, 0.3-300 microg/kg)-response mean arterial pressure curves were plotted. Data are expressed as mean +/- SD. Results Endogenous plasma AVP concentrations were significantly lower in anaphylactic shock (57 +/- 26 pg/ml) than in the nicardipine group (91 +/- 43 pg/ml; P < 0.05). The ED50 was 10.6 microg/kg (95% confidence interval, 7.1-15.9) for epinephrine and 4.1 U/kg (95% confidence interval, 3.0-5.6) for AVP. Terlipressin did not change mean arterial pressure, regardless of the dose used. Conclusions In a rat model, anaphylactic shock is associated with inadequately low plasma AVP concentrations. For clinically relevant doses, AVP and epinephrine had comparable effects on mean arterial pressure and heart rate values, whereas, unexpectedly, terlipressin was ineffective. These results are consistent with reports in humans experiencing anaphylaxis where AVP injection restored arterial pressure.


1978 ◽  
Vol 45 (4) ◽  
pp. 574-580 ◽  
Author(s):  
F. Bonde-Petersen ◽  
L. B. Rowell ◽  
R. G. Murray ◽  
G. G. Blomqvist ◽  
R. White ◽  
...  

Ten men repeatedly performed leg exercise (100–150 W) for 7 min with 30-min recovery periods interspersed. Both legs were made ischemic by total occlusion (OCCL), first for 3 min immediately after exercise and second for 30 s before exercise ended and 3 min into recovery. In addition legs were occluded for 3 min at rest (seated). OCCL at rest increased mean arterial pressure (MAP) by 9 Torr but did not affect cardiac output (CO) or heart rate (HR). OCCL at the end of exercise significantly raised MAP and HR above control values during 3-min recovery but CO was unaffected. OCCL 30 s before the end of exercise further increased MAP and HR significantly during recovery; MAP, CO, and HR were significantly increased above control values (CO by 2.1 1-min-1) during the 3rd min of recovery. We conclude that a strong reflex from ischemic legs maintains normal or elevated CO during leg OCCL. Thus CO was too high relative to total vascular conductance so that MAP was elevated.


1996 ◽  
Vol 85 (4) ◽  
pp. 737-747 ◽  
Author(s):  
Michael Muzi ◽  
Thomas J. Ebert ◽  
William G. Hope ◽  
Brian J. Robinson ◽  
Leonard B. Bell

Background Three strategies were employed to better define the afferent site(s) at which desflurane initiates its neurocirculatory activation. Methods Young (aged 19-28 yr) healthy volunteers were employed in three separate studies. Monitoring included electrocardiography, radial artery blood pressure, and direct recordings of sympathetic outflow to skeletal muscle blood vessels by microneurography. In each study, anesthesia was established with 2.5 mg/kg propofol, and in studies 1 and 2 was maintained with 5.4% desflurane via a double-lumen tube. In study 1 (n = 7) a double-lumen tube was placed with the bronchial cuff just below the vocal cords to selectively give 14.5% desflurane or 2.4% isoflurane to the upper airway (via the tracheal lumen) or lower airway (via the bronchial lumen). Study 2 (n = 14) consisted of standard placement of a left side double-lumen tube to selectively increase the inspired desflurane concentration of either right or left lung to 11% while decreasing the inspired concentration in the opposite lung to 0%, thereby maintaining constant systemic concentrations of desflurane (gas chromatography). Study 3 consisted of lidocaine or placebo airway treatment before anesthetic induction and administration of 11% inspired desflurane by mask: group A-n = 9, topical and nebulized lidocaine, glossopharyngeal and superior laryngeal nerve blocks, and transtracheal administration of lidocaine; group B-n = 7, similar treatment as group A with placebo (saline); and group C-n = 8, systemic infusions of 2% lidocaine to match plasma concentrations of lidocaine in group A. Results In study 1, significant increases in heart rate, mean arterial pressure, and sympathetic neural activity (26%, 23%, and 62%, respectively) occurred when desflurane was directed to the upper airway. These responses were approximately twofold to sixfold larger when desflurane was given to the lower airway (lungs). There were no significant increases in these variables when isoflurane was administered to the upper airways, and a significant increase in heart rate occurred only when isoflurane was delivered to the lower airways. In study 2, separate right or left lung increases in desflurane did not change the blood concentration of desflurane or sympathetic neural activity but led to significant increases in heart rate (44%) and mean arterial pressure (32%). The simultaneous administration of desflurane to both lungs increased the millimolar (mM) concentration of desflurane in the blood from 1.17 to 2.39 mM and led to increases in sympathetic neural activity (750%), heart rate (90%), and mean arterial pressure (63%). In study 3, neither regional nor systemic administration of lidocaine reduced the significant neurocirculatory activation caused by the rapid increase in the inspired concentration of desflurane by mask. Conclusions There are sites in the upper airway (larynx and above) that respond with sympathetic activation during rapid increases in desflurane concentration independent of systemic anesthetic changes. These responses, while lesser than those seen with rapid increases to the lung, may represent direct irritation of airway mucosa. Heart rate and mean arterial pressure responses to desflurane can be initiated by selectively increasing concentrations to either right or left lung without altering systemic levels of desflurane. From this it is inferred that there are sites within the lungs, separate from systemic sites, that mediate this response. Neither systemic lidocaine nor attempted blockade of upper airway sites with cranial nerve blocks combined with topical lidocaine was effective in attenuating the neurocirculatory activation associated with desflurane.


1987 ◽  
Vol 252 (6) ◽  
pp. H1120-H1126 ◽  
Author(s):  
A. W. Quail ◽  
R. L. Woods ◽  
P. I. Korner

We studied the role of arterial and cardiac baroreceptors on mean arterial pressure (MAP) and release of arginine vasopressin (AVP) and plasma renin activity (PRA) during hemorrhage in conscious rabbits. Each rabbit was bled at 2% of its blood volume (BV) per minute until 35% had been removed, after which the blood was reinfused. Each rabbit was studied on three occasions, 7 days apart, and in each experiment, BV-MAP and BV-hormone response curves were constructed. The response to hemorrhage was examined when the input from arterial and cardiac baroreceptors were both intact; arterial baroreceptors only were intact (cardiac receptors were blocked with intrapericardial procaine); cardiac receptors only were intact (after sinoaortic denervation); neither receptor was intact. Resting AVP and PRA levels were unaffected by the various deafferentation procedures. AVP steeply increased only after more than 25% BV had been removed; this response was entirely mediated by cardiac baroreceptors. Increases in PRA occurred at BV loss greater than 15% and were largely independent of baroreceptor input. Maintenance of MAP during hemorrhage was mostly due to drive from the arterial baroreceptors. Thus AVP secretion during hemorrhage contributes little to the maintenance of MAP, and the hypovolemic stimulus to AVP release comes entirely from the cardiac baroreceptors.


2010 ◽  
Vol 108 (1) ◽  
pp. 76-84 ◽  
Author(s):  
John McDaniel ◽  
Anette S. Fjeldstad ◽  
Steve Ives ◽  
Melissa Hayman ◽  
Phil Kithas ◽  
...  

The central and peripheral contributions to exercise-induced hyperemia are not well understood. Thus, utilizing a reductionist approach, we determined the sequential peripheral and central responses to passive exercise in nine healthy men (33 ± 9 yr). Cardiac output, heart rate, stroke volume, mean arterial pressure, and femoral blood flow of the passively moved leg and stationary (control) leg were evaluated second by second during 3 min of passive knee extension with and without a thigh cuff that occluded leg blood flow. Without the thigh cuff, significant transient increases in cardiac output (1.0 ± 0.6 l/min, Δ15%), heart rate (7 ± 4 beats/min, Δ12%), stroke volume (7 ± 5 ml, Δ7%), passive leg blood flow (411 ± 146 ml/min, Δ151%), and control leg blood flow (125 ± 68 ml/min, Δ43%) and a transient decrease in mean arterial pressure (3 ± 3 mmHg, 4%) occurred shortly after the onset of limb movement. Although the rise and fall rates of these variables differed, they all returned to baseline values within 45 s; therefore, continued limb movement beyond 45 s does not maintain an increase in cardiac output or net blood flow. Similar changes in the central variables occurred when blood flow to the passively moving leg was occluded. These data confirm the role of peripheral factors and reveal an essential supportive role of cardiac output in the hyperemia at the onset of passive limb movement. This cardiac output response provides an important potential link between the physiology of active and passive exercise.


Sign in / Sign up

Export Citation Format

Share Document