Metabolic basis of decreased transient outward K+ current in ventricular myocytes from diabetic rats

1996 ◽  
Vol 271 (5) ◽  
pp. H2190-H2196 ◽  
Author(s):  
Z. Xu ◽  
K. P. Patel ◽  
G. J. Rozanski

The purpose of this study was to examine the mechanisms of alterations in cardiac K+ channel function in early stages of experimental diabetes mellitus induced by streptozotocin. Transient outward (Ito) and inward rectifier (IK1) K+ currents were recorded by the whole cell voltage-clamp technique in ventricular myocytes isolated from hearts of 2- to 4-wk diabetic and age-matched control rats. Ito density in myocytes from diabetic rats was approximately 30% less than control (at +60 mV; P < 0.01) under basal recording conditions in the presence of 18 mM external glucose, whereas IK1 density was not different between groups. When external glucose concentration was decreased to 5 mM for 4-6 h, basal Ito density was not changed in either group of myocytes. To further examine the possible metabolic basis of reduced Ito density in myocytes from diabetic rats, we separately tested three structurally different compounds that affect substrate utilization in cardiac myocytes: insulin (0.1 microM), dichloroacetate (1.5 mM), and L-carnitine (10 mM). Each compound completely normalized Ito density in myocytes from diabetic rats treated in vitro for 4-6 h. The same agents had no effect on Ito density in control myocytes, nor was IK1 altered in either group of cells. These data provide the first evidence to support the hypothesis that there is a metabolic basis for decreased Ito density in diabetic rat ventricular myocytes in early stages of this model. Furthermore, our data suggest that depressed glucose metabolism in the diabetic heart may be a key factor underlying changes in Ito channel function, because agents that increase glucose utilization normalize Ito density within a short time period.

1996 ◽  
Vol 271 (5) ◽  
pp. H2154-H2161 ◽  
Author(s):  
Z. Xu ◽  
K. P. Patel ◽  
G. J. Rozanski

This study examined the effects of protons on cardiac ion channel function in early stages of diabetes mellitus. Transient outward (I(to)) and inward rectifier K+ (IK1) currents were recorded by the whole cell, voltage-clamp technique in ventricular myocytes isolated from hearts of streptozotocin-induced diabetic and control rats. Proton concentration was controlled by independently varying the pH of buffered external or pipette (pHp) solutions. External acidification did not alter I(to) in diabetic rat myocytes when initiated after intracellular dialysis with standard pHp 7.2, but when these cells were dialyzed with acidic pHp (6.6 or 6.0), I(to) density was significantly reduced. Low pHp also reduced I(to) density more in cells from diabetic rats than in controls, whereas alkaline pHp had no effect on either group of cells compared with standard pHp 7.2. In control myocytes dialyzed with pHp 6.0, block of Na+/H+ exchange with 5-(N,N-dimethyl)-amiloride (DMA) or Na(+)-free external solution further reduced I(to) density compared with pHp 6.0 alone, whereas these treatments had less effect on acid-dialyzed cells from diabetic rats. Dialysis with pHp to 6.0 did not alter IK1 in either group of cells compared with standard pHp 7.2, but when done in the presence of DMA or Na(+)-free conditions, IK1 density in both groups was significantly reduced by nearly the same amount. We conclude that intracellular protons inhibit I(to) channels in ventricular myocytes from diabetic and control rats, but that for a given acid load, inhibition is markedly greater in diabetics. This difference may be explained by a diabetes-induced decrease in Na+/H+ exchange that limits proton extrusion during intracellular acidosis. Moreover, acidosis may differentially suppress I(to) and IK1, suggesting that these K+ channels exhibit dissimilar sensitivities to intracellular protons.


2006 ◽  
Vol 290 (5) ◽  
pp. H1879-H1888 ◽  
Author(s):  
Yakhin Shimoni ◽  
Don Hunt ◽  
Keyun Chen ◽  
Teresa Emmett ◽  
Gary Kargacin

The autocrine modulation of cardiac K+ currents was compared in ventricular and atrial cells (V and A cells, respectively) from Type 1 diabetic rats. K+ currents were measured by using whole cell voltage clamp. ANG II was measured by ELISA and immunofluorescent labeling. Oxidative stress was assessed by immunofluorescent labeling with dihydroethidium, a measure of superoxide ions. In V cells, K+ currents are attenuated after activation of the renin-angiotensin system (RAS) and the resulting ANG II-mediated oxidative stress. In striking contrast, these currents are not attenuated in A cells. Inhibition of the angiotensin-converting enzyme (ACE) also has no effect, in contrast to current augmentation in V cells. ANG II levels are enhanced in V, but not in A, cells. However, the high basal ANG II levels in A cells suggest that in these cells, ANG II-mediated pathways are suppressed, rather than ANG II formation. Concordantly, superoxide ion levels are lower in diabetic A than in V cells. Several findings indicate that high atrial natriuretic peptide (ANP) levels in A cells inhibit RAS activation. In male diabetic V cells, in vitro ANP (300 nM–1 μM, >5 h) decreases oxidative stress and augments K+ currents, but not when excess ANG II is present. ANP has no effect on ventricular K+ currents when the RAS is not activated, as in control males, in diabetic males treated with ACE inhibitor and in diabetic females. In conclusion, the modulation of K+ currents and oxidative stress is significantly different in A and V cells in diabetic rat hearts. The evidence suggests that this is largely due to inhibition of RAS activation and/or action by ANP in A cells. These results may underlie chamber-specific arrhythmogenic mechanisms.


1984 ◽  
Vol 247 (4) ◽  
pp. E526-E533
Author(s):  
A. S. Jennings

The effect of diabetes on 3,5,3'-triiodothyronine (T3) production was determined in the isolated perfused rat liver. Induction of diabetes with streptozotocin resulted in decreased serum thyroxine (T4) and T3 levels and a progressive decline in hepatic T3 production over 5 days. The decline in T3 production resulted from decreased conversion of T4 to T3, whereas T4 uptake was unchanged. Insulin administration restored serum T4 and T3, hepatic conversion of T4 to T3, and T3 production to normal levels. When serum T4 levels in diabetic rats were maintained by T4 administration, the conversion of T4 to T3 and T3 production returned to control levels. However, restoration of serum T4 levels in fasted rats failed to correct the decrease in hepatic T4 uptake or T3 production. Glucagon, at supraphysiological concentrations in vitro and in vivo, slightly decreased T4 uptake and T3 production without altering the conversion of T4 to T3. These data suggest that the fall in serum T4 levels observed in diabetic rats is important in mediating the decreased hepatic conversion of T4 to T3 and T3 production.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Drew M Nassal ◽  
Xiaoping Wan ◽  
Haiyan Liu ◽  
Danielle Maleski ◽  
Angelina Ramirez-Navarro ◽  
...  

Introduction: Arrhythmogenesis is the primary cause of death in patients with acquired heart disease, and is the consequence of profound dysregulation of both depolarizing and repolarizing currents. Reduction in expression of the auxiliary subunit K+ channel interacting protein 2 (KChIP2), which regulates the transient outward K+ current (Ito), is a common and early event in many cardiac pathologies. Notably, transcriptional changes observed in heart disease can be elicited through direct KChIP2 silencing without disease signaling, suggesting novel transcriptional capacity for KChIP2. Methods and Results: A miRNA microarray was conducted on neonatal rat ventricular myocytes (NRVM) following in vitro silencing of KChIP2, identifying the miR-34 family as a potential transcriptional target of KChIP2. qPCR confirmed reduction in miR-34b/c when over-expressing KChIP2 and increase following silencing. Luciferase assays conducted on the promoter for miR-34b/c reinforced KChIP2 repression on the promoter, while chromatin immunoprecipitation identified direct interaction of KChIP2 on the promoter. Previous studies show modified expression of KChIP2 can lead to changes in several ion channel subunits. Therefore, we investigated if this was the consequence of KChIP2 regulation via miR-34. Expression of miR-34b/c precursors reduced transcript levels of Nav1.5 and Navβ1, and reduced protein levels for Kv4.3, resulting in loss of INa and Ito. To determine the relevance in disease signaling, NRVMs were exposed to 100 μM phenylephrine for 48 hrs, significantly reducing KChIP2, Nav1.5, Navβ1, and Kv4.3, while elevating miR-34b/c. Maintaining KChIP2 expression by adenovirus or blocking miR-34 activity with antagomirs rescued the changes in channel expression. Consequently, miR-34 inhibition rescued the induction of sustained arrhythmias observed in a 2D culture of myocytes through the maintenance of cardiac excitability. Conclusion: Collectively, these observations identify dysregulation of the KChIP2/miR-34 axis as a nodal event in the development of electrical dysfunction that characterize cardiac pathologies, and further identifies miR-34 as a viable therapeutic target for managing arrhythmogenesis in patients with heart disease.


2018 ◽  
Vol 315 (5) ◽  
pp. H1258-H1268 ◽  
Author(s):  
Xin Huang ◽  
Shaozhuang Liu ◽  
Dong Wu ◽  
Yugang Cheng ◽  
Haifeng Han ◽  
...  

Bariatric surgery has been reported to relieve diabetic cardiomyopathy (DCM) effectively. However, the mechanisms remain largely unknown. To determine the effects of bariatric surgery on DCM via modulation of myocardial Ca2+ homeostasis and autophagy, sleeve gastrectomy (SG), duodenal-jejunal bypass (DJB), and sham surgeries were performed in diabetic rats induced by high-fat diet and a low dose of streptozotocin. Cardiac remodeling was assessed by a series of morphometric and histological analyses. Transthoracic echocardiography and hemodynamic measurements were performed to determine cardiac function. Ca2+ homeostasis was evaluated by measuring Ca2+ transients with fura-2 AM in isolated ventricular myocytes along with detection of the abundance of Ca2+ regulatory proteins in the myocardium. Myocardial autophagic flux was determined by expression of autophagy-related proteins in the absence and presence of chloroquine. Both SG and DJB surgery alleviated DCM morphologically and functionally. Ca2+ transients exhibited a significantly higher amplitude and faster decay after SG and DJB, which could be partially explained by increased expression of ryanodine receptor 2, sarco(endo)plasmic reticulum Ca2+-2ATPase, 12.6-kDa FK506-binding protein, and hyperphosphorylation of phospholamban. In addition, a lower level of light chain 3B and higher level of p62 were detected after both SG and DJB, which was not reversed by chloroquine treatment and associated with activated mammalian target of rapamycin and attenuated AMP-activated protein kinase signaling pathway. Collectively, these results provided evidence that bariatric surgery could alleviate DCM effectively, which may result, at least in part, from facilitated Ca2+ homeostasis and attenuated autophagy, suggesting a potential choice for treatment of DCM when properly implemented. NEW & NOTEWORTHY The present study is the first to investigate the modulation of myocardial Ca2+ homeostasis and autophagy after bariatric surgery and to examine its effects on diabetic cardiomyopathy. Bariatric surgery could facilitate myocardial Ca2+ homeostasis and attenuate myocardial autophagy, contributing to the alleviation of cardiomyopathy morphologically and functionally in a diabetic rat model.


1984 ◽  
Vol 160 (1) ◽  
pp. 197-207 ◽  
Author(s):  
H Vlassara ◽  
M Brownlee ◽  
A Cerami

We have previously shown that increased nonenzymatic glycosylation occurs in peripheral nervous tissue of diabetic humans and animals, primarily on the PO-protein of peripheral nerve myelin. The pathophysiologic mechanism by which this biochemical alteration leads to myelin breakdown and removal is not as yet understood. In the present study we show that advanced glycosylation end-product (AGE) adducts that form during long-term exposure of peripheral nerve myelin proteins to glucose in vitro and in vivo markedly alter the way in which myelin interacts with elicited macrophages. In this interaction, macrophages appear to specifically recognize AGEs on myelin, since AGE-BSA competes nearly as effectively as AGE-myelin, while neither unmodified BSA nor unmodified myelin compete. The failure of yeast mannan to interfere with macrophage recognition of AGE-myelin suggests that the mannose/fucose receptor does not mediate this process. Recognition of AGE-protein by macrophages is associated with endocytosis, as demonstrated by resistance of cell-associated radioactivity to removal by trypsin action, and by low temperature inhibition of ligand accumulation in the cellular fraction. 125I-labeled myelin that had been incubated in vitro with 50 mM glucose for 8 wk reached a steady state accumulation within thioglycolate-elicited macrophages that was five times greater than that of myelin incubated without glucose. Similarly, myelin isolated from rats having diabetes for 1.5-2.0 years duration had a steady state level that was 9 times greater than that of myelin from young rats, and 3.5 times greater than that of myelin from age-matched controls. In contrast, myelin isolated from rats having diabetes for 4-5 wk had the same degree of accumulation observed with myelin of age-matched normal rats. These data suggest that the amount of increased nonenzymatic glycosylation observed in the myelin of short-term diabetic rats had not yet resulted in the significant accumulation of AGE-myelin present both in vitro and in the long-term diabetic rats. The disappearance of acid-insoluble radioactivity from within the cells and the appearance of acid-soluble radioactivity released into the medium were very similar for the two groups, suggesting that the striking difference in accumulation seen between normal myelin and AGE-myelin is due primarily to increased uptake. Formation of irreversible AGE-adducts on myelin appears to promote the recognition and uptake of the modified myelin by macrophages. This interaction between AGE-myelin and macrophages may initiate or contribute to the segmental demyelination associated with diabetes and the normal aging of peripheral nerve.


2000 ◽  
Vol 278 (6) ◽  
pp. H1874-H1882 ◽  
Author(s):  
Nandakumar Sambandam ◽  
Mohammed A. Abrahani ◽  
Scott Craig ◽  
Osama Al-Atar ◽  
Esther Jeon ◽  
...  

In streptozotocin (STZ)-induced diabetic rats, we previously showed an increased heparin-releasable (luminal) lipoprotein lipase (LPL) activity from perfused hearts. To study the effect of this enlarged LPL pool on triglyceride (TG)-rich lipoproteins, we examined the metabolism of very-low-density lipoprotein (VLDL) perfused through control and diabetic hearts. Diabetic rats had elevated TG levels compared with control. However, fasting for 16 h abolished this difference. When the plasma lipoprotein fraction of density <1.006 g/ml from fasted control and diabetic rats was incubated in vitro with purified bovine or rat LPL, VLDL from diabetic animals was hydrolyzed as proficiently as VLDL from control animals. Post-heparin plasma lipolytic activity was comparable in control and diabetic animals. However, perfusion of control and diabetic rats with heparinase indicated that diabetic hearts had larger amounts of LPL bound to heparan sulfate proteoglycan-binding sites. [3H]VLDL obtained from control rats, when recirculated through the isolated heart, disappeared at a significantly faster rate from diabetic than from control rat hearts. This increased VLDL-TG hydrolysis was essentially abolished by prior perfusion of the diabetic heart with heparin, implicating LPL in this process. These findings suggest that the enlarged LPL pool in the diabetic heart is present at a functionally relevant location (at the capillary lumen) and is capable of hydrolyzing VLDL. This could increase the delivery of free fatty acid to the heart, and the resultant metabolic changes could induce the subsequent cardiomyopathy that is observed in the chronic diabetic rat.


1988 ◽  
Vol 75 (6) ◽  
pp. 629-635 ◽  
Author(s):  
Geoffrey Burnstock ◽  
Rhona Mirsky ◽  
Abebech Belai

1. Immunohistochemical, immunoblotting and release experiments were performed on ileum from control rats, from 8-week streptozotocin-diabetic rats and from diabetic rats after acute application of insulin in vitro. 2. There was an increase in vasoactive-intestinal-polypeptide-like and a decrease in calcitonin-gene-related-peptide-like immunoreactivity in the myenteric plexus of the diabetic rat ileum, although electrically evoked release of both peptides from enteric nerves was defective. Acute application of insulin in vitro reversed the defective release and changes in immunoreactivity of vasoactive intestinal polypeptide and calcitonin-gene-related peptide seen in the enteric nerves of streptozotocin-diabetic rat ileum. 3. In addition, using a monoclonal neurofilament antibody RT 97 that recognizes a phosphorylated neurofilament epitope present in normal enteric nerves, it was shown that this phosphorylated neurofilament epitope was absent in diabetic nerves, even though a polyclonal neurofilament antibody revealed that neurofilaments were present in both axons and cell bodies of the myenteric plexus of diabetic rat ileum. After only 2 h of insulin incubation in vitro, the phosphorylated neurofilament epitope was again present in the nerves. 4. It is suggested that the abnormal distribution of phosphorylated neurofilaments and defective storage and release of vasoactive intestinal polypeptide and calcitonin-gene-related peptide in the present study may be a more general feature of diabetes. The restoration of these abnormalities by continuous acute insulin application in vitro shown here suggests that the availability of a steady level of insulin might prevent some of the changes which occur in early stages of diabetes. If so, this could influence the use of insulin in the treatment of diabetes, particularly in view of the recent report that short-term continuous subcutaneous insulin infusion restores the function of the autonomic and peripheral nerves in type I diabetic patients [Krönert, K., Hülsen, J., Luft, D., Stetter, T. & Eggstein, M. (1987) Journal of Clinical Endocrinology and Metabolism, 64, 1219–1223].


2020 ◽  
Author(s):  
Veeresh B Toragall ◽  
Baskarn V

Abstract Aiming to enhance therapeutic efficiency of lutein, lutein loaded chitosan-sodium alginate (CS-SA) based nanocarrier composite (LNCs) were prepared and evaluated for lutein bioavailability and pharmacokinetics in diabetic rats in comparison to micellar lutein (control). Further, cytotoxicity, cellular uptake and protective activity against H2O2 induced oxidative stress in ARPE-19 cells were studied. Results revealed that LNCs displayed maximal lutein AUC in plasma, liver and eye respectively in normal (3.1, 2.7 and 5.2 folds) and diabetic (7.3, 3.4 and 2.8 folds) rats. Lutein from LNCs exhibited a higher half-life time, mean residence time and slow clearance from the plasma, indicating prolonged circulation compared to control. In ARPE-19 cells, pre-treatment with LNCs (10 µM) have significantly attenuated H2O2 induced cell death, intracellular ROS and mitochondrial membrane potential compared to control. In conclusion, LNCs improve the lutein bioavailability in conditions like diabetes, diabetic retinopathy and cataract to curtail oxidative stress in retinal cells.


Sign in / Sign up

Export Citation Format

Share Document