Ca(2+)-dependent outward currents in myocytes from epicardial border zone of 5-day infarcted canine heart

1997 ◽  
Vol 273 (3) ◽  
pp. H1386-H1394 ◽  
Author(s):  
R. Aggarwal ◽  
J. Pu ◽  
P. A. Boyden

Myocytes from the epicardial border zone (EBZ) of the 5-day infarcted canine heart (IZ) have abnormal transmembrane action potentials, reduced L-type Ca2+ currents (ICa,L) and altered intracellular Ca2+ (Cai) transients compared with those of normal epicardial myocytes (NZ). We hypothesized that altered Cai cycling might be reflected in differences in Cai-dependent outward currents (Ito2). We recorded Ito2 in NZ and IZ using whole cell patch-clamp techniques. Ito2 was defined as the amplitude of the 4-aminopyridine-resistant transient outward current that was blocked by 200 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) or DIDS+ ryanodine (2 microM). Ito2 were present in both NZ and IZ, but peak density was significantly reduced in IZ, particularly at positive plateau voltages. Time course of decay of Ito2 was biexponential and similar in NZ and IZ. A given peak ICa,L was usually associated with a smaller peak Ito2 in IZ. These differences were exaggerated when Ito2 and Cai transients were determined in rapidly paced cells. In summary, myocytes surviving in the EBZ of the infarcted heart have Ito2, yet they are reduced in density and can vary, particularly at fast pacing rates.

1996 ◽  
Vol 271 (2) ◽  
pp. H548-H561 ◽  
Author(s):  
J. M. Di Diego ◽  
Z. Q. Sun ◽  
C. Antzelevitch

Transmural heterogeneities of repolarizing currents underlie prominent differences in the electrophysiology and pharmacology of ventricular epicardial, endocardial, and M cells in a number of species. The degree to which heterogeneities exist between the right and left ventricles is not well appreciated. The present study uses standard microelectrode and whole cell patch-clamp techniques to contrast the electrophysiological characteristics and pharmacological responsiveness of tissues and myocytes isolated from right (RVE) and left canine ventricular epicardium (LVE). RVE and LVE studied under nearly identical conditions displayed major differences in the early repolarizing phases of the action potential. The magnitude of phase 1 in RVE was nearly threefold that in LVE: 28.7 +/- 6.2 vs. 10.6 +/- 4.1 mV (basic cycle length = 2,000 ms). Phase 1 in RVE was also more sensitive to alterations of the stimulation rate and to 4-aminopyridine (4-AP), suggesting a much greater contribution of the transient outward current (I(to) 1) in RVE than in LVE. The combination of 4-AP plus ryanodine, low chloride, or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (chloride channel blocker) completely eliminated the notch and all rate dependence of the early phases of the action potential, making RVE and LVE indistinguishable. At +70 mV, RVE myocytes displayed peak I(to) 1 densities between 28 and 37 pA/pF. LVE myocytes included cells with similar I(to) 1 densities (thought to represent subsurface cells) but also cells with much smaller current levels (thought to represent surface cells). Average peak I(to) 1 density was significantly smaller in LVE than in RVE at voltages more than or equal to +10 mV. Our data point to prominent differences in the magnitude of the I(to) 1-mediated action potential notch in cells at the surface of RVE compared with the LVE and suggest that important distinctions may exist in the response of these two tissues to pharmacological agents and pathophysiological states, as previously demonstrated for epicardium and endocardium. Our findings also suggest that a calcium-activated outward current contributes to the early repolarization phase in RVE and LVE and that the influence of this current, although small, is more important in the left ventricle.


1994 ◽  
Vol 267 (3) ◽  
pp. H1157-H1166 ◽  
Author(s):  
G. M. Wahler ◽  
S. J. Dollinger ◽  
J. M. Smith ◽  
K. L. Flemal

The rat ventricular action potential shortens after birth. The contribution of increases in the transient outward current (Ito) to postnatal action potential shortening was assessed by measuring Ito in isolated cells and by determining the effect of 2 mM 4-aminopyridine (4-AP) on the action potentials of papillary muscles. 4-AP had no effect on 1-day action potential duration at 25% repolarization (APD25), and 1-day cells had little Ito. In 8- to 10-day muscles, 4-AP caused a small, but significant, increase in APD25. Ito increased slightly between day 1 and days 8-10, but this increase was not significant. Most of the increase in Ito (79%) and in the response to 4-AP (64%) occurred between days 8-10 and adult; however, approximately 75% of the APD25 shortening took place by days 8-10. Thus, while Ito may contribute to repolarization in late neonatal and adult cells, the different time courses of action potential shortening and increases in Ito suggest that changes in Ito are unlikely to be responsible for most of the postnatal action potential shortening.


1995 ◽  
Vol 198 (7) ◽  
pp. 1483-1492 ◽  
Author(s):  
A Chrachri

Ionic currents from freshly isolated and identified swimmeret motor neurones were characterized using a whole-cell patch-clamp technique. Two outward currents could be distinguished. A transient outward current was elicited by delivering depolarizing voltage steps from a holding potential of -80 mV. This current was inactivated by holding the cells at a potential of -40 mV and was also blocked completely by 4-aminopyridine. A second current had a sustained time course and continued to be activated at a holding potential of -40 mV. This current was partially blocked by tetraethylammonium. These outward currents resembled two previously described potassium currents: the K+ A-current and the delayed K+ rectifier current respectively. Two inward currents were also detected. A fast transient current was blocked by tetrodotoxin and inactivated at holding potential of -40 mV, suggesting that this is an inward Na+ current. A second inward current had a sustained time course and was affected neither by tetrodotoxin nor by holding the cell at a potential of -40 mV. This current was substantially enhanced by the addition of Ba2+ to the bath or when equimolar Ba2+ replaced Ca2+ as the charge carrier. Furthermore, this current was significantly suppressed by nifedipine. All these points suggest that this is an L-type Ca2+ current. Bath application of nifedipine into an isolated swimmeret preparation affected both the frequency of the swimmeret rhythm and the duration of power-stroke activity, suggesting an important role for the inward Ca2+ current in maintaining a regular swimmeret rhythmic activity in crayfish.


1997 ◽  
Vol 273 (3) ◽  
pp. H1096-H1106 ◽  
Author(s):  
A. C. Zygmunt ◽  
D. C. Robitelle ◽  
G. T. Eddlestone

The contributions of the 4-aminopyridine (4-AP)-sensitive transient outward potassium conductance (Ito1) and the calcium-activated chloride conductance (ICl(Ca)] to cardiac action potentials were investigated in canine ventricular myocytes. Action potentials or currents were recorded at 37 degrees C using standard whole cell or amphotericin B perforated-patch-clamp techniques. Inhibition of Ito1 by 1 mM 4-AP prolonged phase 1 repolarization, elevated the action potential notch, and depressed the plateau. Action potential voltage clamp revealed that 4-AP blocked a rapidly decaying outward current during phase 1 without affecting plateau or diastolic currents. These results suggested that depression of the plateau was not a direct result of Ito1 inhibition but followed from delayed phase 1 repolarization. Calcium current (ICa) at the peak of the action potential dome was reduced 60 +/- 4% when the rate of phase 1 repolarization was reduced. ICl(Ca) measured by action potential clamp reversed over the course of the action potential. Chloride fluxes associated with outward and inward components of the 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid-sensitive current were +130 +/- 17 and -184 +/- 20 (pA.ms)/pF, respectively. The effects of selective inhibition of ICl(Ca) on the action potential were dependent on the rate of early repolarization and the prominence of the notch. Inhibition of ICl(Ca) elevated the plateau and slightly abbreviated action potential duration when the notch was prominent. When repolarization was prolonged and the notch was shallow, inhibition of ICl(Ca) elevated the notch and the plateau and abbreviated duration. We have shown that Ito1 and ICl(Ca) contribute to canine ventricular action potentials. The extent of overlap between Ito1 and ICl(Ca) during the action potential is largely determined by the amplitude of Ito1 and the depth of the notch. Regional differences in the density of Ito1, or interventions that moderate phase 1 repolarization by reducing this current, will have considerable effect on the time course of ICa and calcium-dependent conductances.


2005 ◽  
Vol 289 (2) ◽  
pp. H667-H673 ◽  
Author(s):  
Wen Dun ◽  
Penelope A. Boyden

We have shown reduced density and altered kinetics in slowly activating K+ currents ( IKs) in epicardial border zone (EBZ) cells (IZs) of the 5-day-infarcted canine heart (Jiang M, Cabo, C, Yao J-A, Boyden PA, and Tseng G-N. Cardiovasc Res 48: 34–43, 2000). β-Adrenergic stimulation with isoproterenol increases IKs in normal cells (NZs). In this study, we used a voltage-clamp protocol with an external solution to isolate IKs from contaminating currents to determine the effects of 1 μM isoproterenol on IKs in IZs and NZs. Under our recording conditions, 10 μM azimilide-sensitive currents were stimulated with isoproterenol to compare responsiveness of IKs to isoproterenol in the two cell groups. IKs tail density was reduced 67% in IZs ( group I, n = 26) compared with NZs ( n = 24, P < 0.05). Isoproterenol-stimulated azimilide-sensitive tail currents were increased 1.72 ± 0.2-fold in NZs and 2.2 ± 0.3-fold in IZs ( P > 0.05). In 33% of IZs ( group II, n = 13), native currents showed no tail currents; however, isoproterenol-stimulated azimilide-sensitive currents were voltage dependent, fast activating, and large in amplitude compared with group I IZs, similar to “lone” KCNQ1 currents. Using short clamp pulses, we also found an increase in sustained currents sensitive to tetraethylammonium chloride (TEA) and no change in C-9356-sensitive currents in IZs with little or no transient outward current. In some IZs where IKs is downregulated, the effect of isoproterenol on IKs was similar to that on IKs in NZs. In others, the existence of lone KCNQ1-type currents, which are sensitive to β-adrenergic stimulation, is consistent with our findings of an increased KCNQ1-to-KCNE1 mRNA ratio (Jiang et al.). Accompanying altered IKs in IZs are an enhanced TEA-sensitive current and a normal C-9356-sensitive current.


1990 ◽  
Vol 64 (1) ◽  
pp. 262-272 ◽  
Author(s):  
N. L. Silva ◽  
C. M. Pechura ◽  
J. L. Barker

1. We have investigated the electrical properties of neurons acutely dissociated from the substantia nigra zona compacta (SNZC) of the postnatal rat with whole cell patch-clamp recordings. Retrogradely labeled nigrostriatal neurons were identified with the use of rhodamine-labeled fluorescent latex microspheres. Over 90% of the rhodamine-labeled neurons in the SNZC demonstrated formaldehyde/glutaraldehyde-induced catecholamine fluorescence, indicating that they were dopaminergic (DA) neurons. 2. DA neurons had 15-20 microns ovoid or fusiform-shaped cell bodies with 2-3 thick proximal processes. Labeled neurons generated spontaneous action-potential activity in both regular and irregular patterns. These cells exhibited input resistances of 300-600 M omega and action-potential amplitudes of 60-80 mV. Locally applied dopamine inhibited the spontaneous activity of these neurons by hyperpolarizing the cells. 3. Outward currents were examined with voltage-clamp recordings using a tetrodotoxin (TTX)-containing medium. In all DA cells, depolarizing voltage commands activated several components of outward current depending on the holding potential of the cell. When cells were held at -40 mV (or more positive), voltage steps activated a sustained outward current. If the membrane potential was held more negative than -50 mV, a rapidly activating and inactivating component of outward current response could also be detected. 4. From a hyperpolarized holding potential (-90 mV) the transient outward current activated with depolarizing commands to -55 mV, peaking within 5 ms. The current inactivated with a monoexponential time constant of 53 +/- 4 (SE) ms. At more positive holding potentials (-40 mV) the steady-state inactivation of the current could be removed by applying a conditioning hyperpolarizing prepulse. In response to a fixed depolarizing voltage step, half-maximal inactivation occurred at about -65 mV. The transient current was blocked by 4-aminopyridine (4-AP). 5. The sustained outward currents were isolated by holding the cells at -40 mV. Two components of sustained outward current were distinguished by their sensitivity to the calcium channel blockers Co2+ (5 mM) and/or Cd2+ (200 microM). The current remaining in the presence of Co2+/Cd2+ was activated by depolarizing voltage commands more positive than -40 mV.(ABSTRACT TRUNCATED AT 400 WORDS)


1981 ◽  
Vol 92 (1) ◽  
pp. 13-22
Author(s):  
DAISUKE YAMAMOTO ◽  
HIROSHI WASHIO

Two components of outward currents were investigated under voltage clamp conditions in Tenebrio muscle fibres. The instantaneous current-voltage relation for the transient outward current showed outward rectification. The tail currents for the delayed outward currents were made up of either one or two exponential components. The activation process for the delayed current was analysed using positive tails that decayed with a simple exponential time course. The delayed current was half-activated at about + 35 mV. Two rate constants for activation are both monotonic functions of membrane potential. The reversal potential for the delayed current was only partially dependent on the external K-concentration. The role of the two outward currents in the production of the action potential was discussed.


1974 ◽  
Vol 63 (5) ◽  
pp. 533-552 ◽  
Author(s):  
Clay M. Armstrong ◽  
Francisco Bezanilla

The sodium current (INa) that develops after step depolarization of a voltage clamped squid axon is preceded by a transient outward current that is closely associated with the opening of the activation gates of the Na pores. This "gating current" is best seen when permeant ions (Na and K) are replaced by relatively impermeant ones, and when the linear portion of capacitative current is eliminated by adding current from positive steps to that from exactly equal negative ones. During opening of the Na pores gating current is outward, and as the pores close there is an inward tail of current that decays with approximately the same time-course as INa recorded in Na-containing medium. Both outward and inward gating current are unaffected by tetrodotoxin (TTX). Gating current is capacitative in origin, the result of relatively slow reorientation of charged or dipolar molecules in a suddenly altered membrane field. Close association with the Na activation process is clear from the time-course of gating current, and from the fact that three procedures that reversibly block INa also block gating current: internal perfusion with Zn2+, prolonged depolarization of the membrane, and inactivation of INa with a short positive prepulse.


1991 ◽  
Vol 66 (3) ◽  
pp. 744-761 ◽  
Author(s):  
S. M. Johnson ◽  
P. A. Getting

1. The purpose of this study was to determine the electrophysiological properties of neurons within the region of the nucleus ambiguus (NA), an area that contains the ventral respiratory group. By the use of an in vitro brain stem slice preparation, intracellular recordings from neurons in this region (to be referred to as NA neurons, n = 235) revealed the following properties: postinhibitory rebound (PIR), delayed excitation (DE), adaptation, and posttetanic hyperpolarization (PTH). NA neurons were separated into three groups on the basis of their expression of PIR and DE: PIR cells (58%), DE cells (31%), and Non cells (10%). Non cells expressed neither PIR nor DE and no cells expressed both PIR and DE. 2. PIR was a transient depolarization that produced a single action potential or a burst of action potentials when the cell was released from hyperpolarization. In the presence of tetrodotoxin (TTX), the maximum magnitude of PIR was 7-12 mV. Under voltage-clamp conditions, hyperpolarizing voltage steps elicited a small inward current during the hyperpolarization and a small inward tail current on release from hyperpolarization. These currents, which mediate PIR, were most likely due to Q-current because they were blocked with extracellular cesium and were insensitive to barium. 3. DE was a delay in the onset of action potential firing when cells were hyperpolarized before application of depolarizing current. When cells were hyperpolarized to -90 mV for greater than or equal to 300 ms, maximum delays ranged from 150 to 450 ms. The transient outward current underlying DE was presumed to be A-current because of the current's activation and inactivation characteristics and its elimination by 4-aminopyridine (4-AP). 4. Adaptation was examined by applying depolarizing current for 2.0 s and measuring the frequency of evoked action potentials. Although there was a large degree of variability in the degree of adaptation, PIR cells tended to express less adaptation than DE and Non cells. Nearly three-fourths of all NA neurons adapted rapidly (i.e., 50% adaptation in less than 200 ms), but PIR cells tended to adapt faster than DE and Non cells. PTH after a train of action potentials was relatively rare and occurred more often in DE cells (43%) and Non cells (33%) than in PIR cells (13%). PTH had a magnitude of up to 18 mV and time constants that reflected the presence of one (1.7 +/- 1.4 s, mean +/- SD) or two components (0.28 +/- 0.13 and 4.1 +/- 2.2 s).(ABSTRACT TRUNCATED AT 400 WORDS)


1997 ◽  
Vol 273 (6) ◽  
pp. C2010-C2021 ◽  
Author(s):  
S. D. Koh ◽  
G. M. Dick ◽  
K. M. Sanders

The patch-clamp technique was used to determine the ionic conductances activated by ATP in murine colonic smooth muscle cells. Extracellular ATP, UTP, and 2-methylthioadenosine 5′-triphosphate (2-MeS-ATP) increased outward currents in cells with amphotericin B-perforated patches. ATP (0.5–1 mM) did not affect whole cell currents of cells dialyzed with solutions containing ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid. Apamin (3 × 10−7M) reduced the outward current activated by ATP by 32 ± 5%. Single channel recordings from cell-attached patches showed that ATP, UTP, and 2-MeS-ATP increased the open probability of small-conductance, Ca2+-dependent K+ channels with a slope conductance of 5.3 ± 0.02 pS. Caffeine (500 μM) enhanced the open probability of the small-conductance K+ channels, and ATP had no effect after caffeine. Pyridoxal phosphate 6-azophenyl-2′,4′-disulfonic acid tetrasodium (PPADS, 10−4 M), a nonselective P2 receptor antagonist, prevented the increase in open probability caused by ATP and 2-MeS-ATP. PPADS had no effect on the response to caffeine. ATP-induced hyperpolarization in the murine colon may be mediated by P2y-induced release of Ca2+ from intracellular stores and activation of the 5.3-pS Ca2+-activated K+ channels.


Sign in / Sign up

Export Citation Format

Share Document