scholarly journals Effects of high glucose on vascular endothelial growth factor expression in vascular smooth muscle cells

1997 ◽  
Vol 273 (5) ◽  
pp. H2224-H2231 ◽  
Author(s):  
Rama Natarajan ◽  
Wei Bai ◽  
Linda Lanting ◽  
Noe Gonzales ◽  
Jerry Nadler

Vascular endothelial growth factor (VEGF), in addition to its growth-promoting effects on endothelial cells, can also increase vascular permeability and monocyte migration. It has therefore been implicated in the pathogenic neovascularization associated with diabetic retinopathy and atherosclerosis. However, the factors regulating VEGF expression in the vascular wall are not fully understood. In this study, we examined the regulation of VEGF expression in vascular smooth muscle cells (VSMC) by hyperglycemia as well as by angiotensin II (ANG II). We also examined whether the 12-lipoxygenase (12-LO) product 12-hydroxyeicosatetraenoic acid (12-HETE) can alter VEGF expression, since 12-LO products of arachidonic acid have angiogenic properties, and ANG II as well as high glucose (HG, 25 mM) can increase 12-LO activity and expression in VSMC. Studies were carried out in human (HSMC) or porcine VSMC (PSMC), which were cultured for at least two passages under normal glucose (NG, 5.5 mM) or HG conditions. HG culture alone increased the expression of VEGF mRNA and protein in both HSMC and PSMC. Furthermore, ANG II treatment significantly induced VEGF mRNA and protein expression only in VSMC cultured in HG and not NG. In addition, 12-HETE significantly increased VEGF mRNA and protein expression in HSMC cultured in NG as well as in HG. Cells cultured in HG also secreted significantly greater amounts of VEGF into the culture medium. These results suggest that elevated VEGF production under HG conditions may play a role in the accelerated vascular disease observed in diabetes.

1999 ◽  
Vol 58 (2) ◽  
pp. 128-136 ◽  
Author(s):  
Cynthia L. Grosskreutz ◽  
Bela Anand-Apte ◽  
Cécile Dupláa ◽  
Timothy P. Quinn ◽  
Bruce I. Terman ◽  
...  

1999 ◽  
Vol 10 (4) ◽  
pp. 907-919 ◽  
Author(s):  
J. A. Dibbens ◽  
D. L. Miller ◽  
A. Damert ◽  
W. Risau ◽  
M. A. Vadas ◽  
...  

Vascular endothelial growth factor (VEGF) is a key regulator of developmental, physiological, and tumor angiogenesis. Upregulation of VEGF expression by hypoxia appears to be a critical step in the neovascularization of solid cancers. The VEGF mRNA is intrinsically labile, but in response to hypoxia the mRNA is stabilized. We have systematically analyzed the regions in the VEGF mRNA that are responsible for its lability under normoxic conditions and for stabilization in response to hypoxia. We find that the VEGF mRNA not only contains destabilizing elements in its 3′ untranslated region (3′UTR), but also contains destabilizing elements in the 5′UTR and coding region. Each region can independently promote mRNA degradation, and together they act additively to effect rapid degradation under normoxic conditions. Stabilization of the mRNA in response to hypoxia is completely dependent on the cooperation of elements in each of the 5′UTR, coding region, and 3′UTR. Combinations of any of two of these three regions were completely ineffective in responding to hypoxia, whereas combining all three regions allowed recapitulation of the hypoxic stabilization seen with the endogenous VEGF mRNA. We conclude that multiple regions in the VEGF mRNA cooperate both to ensure the rapid degradation of the mRNA under normoxic conditions and to allow stabilization of the mRNA in response to hypoxia. Our findings highlight the complexity of VEGF gene expression and also reveal a mechanism of gene regulation that could become the target for strategies of therapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document