scholarly journals Human carotid baroreflex during isometric lower arm contraction and ischemia

1998 ◽  
Vol 275 (3) ◽  
pp. H940-H945 ◽  
Author(s):  
Jonas Spaak ◽  
Patrik Sundblad ◽  
Dag Linnarsson

Our aim was to determine the roles of somatomotor activation and muscle ischemia for the tachycardia and hypertension of isometric arm contraction. Carotid-cardiac and carotid-mean arterial pressure (MAP) baroreflex response curves were determined in 10 men during rest, during isometric arm contraction at 30% of maximum, and during postcontraction ischemia. Carotid distending pressure (CDP) was changed by applying pressure and suction in a neck chamber. Pressures ranged from +40 to −80 mmHg and were applied repeatedly for 15 s during the three conditions. Maximum slopes and ranges of the response curves did not differ among conditions. The heart rate (HR) curve was shifted to a 14 ± 1.8 (mean ± SE) beats/min higher HR and a 9 ± 5.7 mmHg higher CDP during contraction and to a 14 ± 5.9 mmHg higher CDP during postcontraction ischemia with no change of HR compared with rest. The MAP curve was shifted to a 20 ± 2.8 mmHg higher MAP and to a 18 ± 5.4 mmHg higher CDP during contraction, and the same shifts were recorded during postcontraction ischemia. We conclude that neither somatomotor activation nor muscle ischemia changes the sensitivity of arterial baroreflexes. The upward shift of the MAP response curve, with no shift of the HR response curve during postexercise ischemia, supports the notion of parallel pathways for MAP and HR regulation in which HR responses are entirely caused by somatomotor activation and the pressor response is mainly caused by muscle ischemia.

1993 ◽  
Vol 75 (1) ◽  
pp. 273-278 ◽  
Author(s):  
K. P. Davy ◽  
W. G. Herbert ◽  
J. H. Williams

The purpose of this study was to test the hypothesis that prostaglandins participate in metaboreceptor stimulation of the pressor response to sustained isometric handgrip contraction in humans. To accomplish this, mean arterial pressure, heart rate (n = 10), and plasma norepinephrine levels (n = 8) were measured in healthy male subjects during sustained isometric handgrip at 40% of maximal voluntary contraction force to exhaustion and during a period of postcontraction muscle ischemia. The subjects were given a double-blind and counterbalanced administration of placebo or a single 100-mg dose of indomethacin. A period of 1 wk was allowed for systemic clearance of the drug. Mean arterial pressure increased 25 +/- 5 vs. 22 +/- 4 mmHg during the final minute of isometric handgrip contraction and 26 +/- 2 vs. 21 +/- 5 during the last minute of postcontraction muscle ischemia in the placebo vs. the indomethacin trial (P > 0.05), respectively. Heart rate was increased 21 +/- 4 vs. 17 +/- 3 beats/min during the final minute of isometric handgrip contraction in the placebo vs. the indomethacin trial (P > 0.05), respectively, and returned to control values during postcontraction muscle ischemia. Plasma norepinephrine levels increased 343 +/- 89 vs. 289 +/- 89 pg/ml after isometric handgrip contraction and 675 +/- 132 vs. 632 +/- 132 pg/ml after postcontraction muscle ischemia (P > 0.05) in the placebo vs. the indomethacin trial, respectively. These results suggest that prostaglandin inhibition does not significantly modulate muscle contraction-induced stimulation of mean arterial pressure, heart rate, or plasma norepinephrine levels.


2018 ◽  
Vol 596 (8) ◽  
pp. 1373-1384 ◽  
Author(s):  
Thomas J. Hureau ◽  
Joshua C. Weavil ◽  
Taylor S. Thurston ◽  
Ryan M. Broxterman ◽  
Ashley D. Nelson ◽  
...  

1980 ◽  
Vol 238 (6) ◽  
pp. H815-H822 ◽  
Author(s):  
R. B. Stephenson ◽  
D. E. Donald

Exposure of the vascularly isolated carotid sinuses of 8 conscious dogs to static pressures between 50 and 240 mmHg caused significantly smaller increases [23 +/- 5(SE) mmHg] than decreases (37 +/- 4 mmHg) in arterial pressure frossure and heart rate and shifted the stimulus-response curve upward. Bilateral cervical vagotomy in conscious dogs caused sustained (3 h) increases in arterial pressure (40 +/- 5 mmHg), significantly larger than after atropinization (7 +/- 2 mmHg). In anesthetized, but not in conscious dogs, high sinus pressure reversed the hypertension caused by vagotomy. After vagotomy, low sinus pressure resulted in arterial pressures greater than 200 -mHg. In conscious dogs the carotid baroreflex can widely vary arterial pressure and heart rate despite buffering by extracarotid baroreceptors with vagal afferents, but cannot fully compensate for the acute loss of the latter. Extracarotid baroreceptors actively participate with carotid baroreceptors in the regulation of arterial pressure and better buffer carotid baroreflex-induced increases than decreases in arterial pressure.


2016 ◽  
Vol 311 (4) ◽  
pp. R735-R741 ◽  
Author(s):  
Davor Krnjajic ◽  
Dustin R. Allen ◽  
Cory L. Butts ◽  
David M. Keller

Whole body heat stress (WBH) results in numerous cardiovascular alterations that ultimately reduce orthostatic tolerance. While impaired carotid baroreflex (CBR) function during WBH has been reported as a potential reason for this decrement, study design considerations may limit interpretation of previous findings. We sought to test the hypothesis that CBR function is unaltered during WBH. CBR function was assessed in 10 healthy male subjects (age: 26 ± 3; height: 185 ± 7 cm; weight: 82 ± 10 kg; BMI: 24 ± 3 kg/m2; means ± SD) using 5-s trials of neck pressure (+45, +30, and +15 Torr) and neck suction (−20, −40, −60, and −80 Torr) during normothermia (NT) and passive WBH (Δ core temp ∼1°C). Analyses of stimulus response curves (four-parameter logistic model) for CBR control of heart rate (CBR-HR) and mean arterial pressure (CBR-MAP), as well as separate two-way ANOVA of the hypotensive and hypertensive stimuli (factor 1: thermal condition, factor 2: chamber pressure), were performed. For CBR-HR, maximal gain was increased during WBH (−0.73 ± 0.11) compared with NT (−0.39 ± 0.04, mean ± SE, P = 0.03). In addition, the CBR-HR responding range was increased during WBH (33 ± 5) compared with NT (19 ± 2 bpm, P = 0.03). Separate analysis of hypertensive stimulation revealed enhanced HR responses during WBH at −40, −60, and −80 Torr (condition × chamber pressure interaction, P = 0.049) compared with NT. For CBR-MAP, both logistic analysis and separate two-way ANOVA revealed no differences during WBH. Therefore, in response to passive WBH, CBR control of heart rate (enhanced) and arterial pressure (no change) is well preserved.


1988 ◽  
Vol 66 (11) ◽  
pp. 1455-1460 ◽  
Author(s):  
Kathryn A. King ◽  
Catherine C. Y. Pang

The effect of intracerebroventricular (i.c.v.) injection of the α2-adrenoceptor agonists clonidine and B-HT 920 on mean arterial pressure (MAP), heart rate (HR), and plasma concentrations of noradrenaline and adrenaline was examined in conscious unrestrained rats. The injection of 1.0 μg clonidine significantly decreased MAP and slightly decreased HR. Plasma noradrenaline and adrenaline levels were slightly but not significantly decreased after the injection of 1 μg clonidine. In contrast, the injection of 0.1–10.0 μg B-HT 920 increased MAP and decreased HR. Plasma noradrenaline and adrenaline levels were slightly increased after the injection of the 1- and 10-μg doses. The i.c. v. injection of the α2-antagonist rauwolscine slightly but not significantly increased MAP and plasma noradrenaline and adrenaline levels. The responses to i.c. v. injection of clonidine and B-HT 920 were not changed by prior administration of rauwolscine. Neither the pressor response to B-HT 920 nor the depressor response to clonidine was abolished by rauwolscine, suggesting that neither response was mediated by α2-adrenoceptors.


2014 ◽  
Vol 129 (1) ◽  
pp. 79-85 ◽  
Author(s):  
I S Kocamanoglu ◽  
S Cengel Kurnaz ◽  
A Tur

AbstractObjective:This study aimed to compare the effects of topical and systemic lignocaine on the circulatory response to direct laryngoscopy performed under general anaesthesia.Methods:Ninety-nine patients over 20 years of age, with a physical status of I–II (classified according to the American Society of Anesthesiologists), were randomly allocated to 3 groups. One group received 5 ml of 0.9 per cent physiological saline intravenously, one group received 1.5 mg/kg lignocaine intravenously, and another group received seven puffs of 10 per cent lignocaine aerosol applied topically to the airway. Mean arterial pressures, heart rates and peripheral oxygen saturations were recorded, and changes in mean arterial pressure and heart rate ratios were calculated.Results:Changes in the ratios of mean arterial pressure and heart rate were greater in the saline physiological group than the other groups at 1 minute after intubation. Changes in the ratios of mean arterial pressure (at the same time point) were greater in the topical lignocaine group than in the intravenous lignocaine group, but this finding was not statistically significant.Conclusion:Lignocaine limited the haemodynamic responses to laryngoscopy and endotracheal intubation during general anaesthesia in rigid suspension laryngoscopy.


1992 ◽  
Vol 20 (2) ◽  
pp. 121-126
Author(s):  
K Mikawa ◽  
N Maekawa ◽  
R Goto ◽  
H Yaku ◽  
N Saitoh ◽  
...  

The efficacy of intravenous mexiletine in attenuating the cardiovascular responses to laryngoscopy and tracheal intubation was studied in 30 normotensive patients undergoing elective surgery. The patients were randomly allocated to one of three treatment groups: saline ( n = 10); 2 mg/kg mexiletine ( n = 10); and 3 mg/kg mexiletine ( n = 10). The placebo/mexiletine was administered immediately before induction of anaesthesia using 5 mg/kg thiopentone and tracheal intubation was facilitated with 0.2 mg/kg vecuronium; laryngoscopy lasting 30 s was attempted 2 min after induction of anaesthesia. All groups showed a significant ( P < 0.05) increase in mean arterial pressure and heart rate associated with tracheal intubation. The increase in mean arterial pressure was significantly ( P < 0.05) smaller in patients receiving 3 mg/kg mexiletine compared with those receiving either saline or 2 mg/kg mexiletine. There was no significant attenuation in heart rate in either of the mexiletine treatment groups compared with the saline group. It is concluded that 3 mg/kg mexiletine given intravenously provides a simple and effective method for attenuating the pressor response to laryngoscopy and tracheal intubation.


2018 ◽  
Vol 125 (2) ◽  
pp. 634-641 ◽  
Author(s):  
Shigehiko Ogoh ◽  
Michaël Marais ◽  
Romain Lericollais ◽  
Pierre Denise ◽  
Peter B. Raven ◽  
...  

The aim of the present study was to assess carotid baroreflex (CBR) function during acute changes in otolithic activity in humans. To address this question, we designed a set of experiments to identify the modulatory effects of microgravity on CBR function at a tilt angle of −2°, which was identified to minimize changes in central blood volume during parabolic flight. During parabolic flight at 0 and 1 g, CBR function curves were modeled from the heart rate (HR) and mean arterial pressure (MAP) responses to rapid pulse trains of neck pressure and neck suction ranging from +40 to −80 Torr; CBR control of HR (carotid-HR) and MAP (carotid-MAP) function curves, respectively. The maximal gain of both carotid-HR and carotid-MAP baroreflex function curves were augmented during microgravity compared with 1 g (carotid-HR, −0.53 to −0.80 beats·min−1·mmHg−1, P < 0.05; carotid-MAP, −0.24 to −0.30 mmHg/mmHg, P < 0.05). These findings suggest that parabolic flight-induced acute change of otolithic activity may modify CBR function and identifies that the vestibular system contributes to blood pressure regulation under fluctuations in gravitational forces. NEW & NOTEWORTHY The effect of acute changes in vestibular activity on arterial baroreflex function remains unclear. In the present study, we assessed carotid baroreflex function without changes in central blood volume during parabolic flight, which causes acute changes in otolithic activity. The sensitivity of both carotid heart rate and carotid mean arterial pressure baroreflex function was augmented in microgravity compared with 1 g, suggesting that the vestibular system contributes to blood pressure regulation in humans on Earth.


1978 ◽  
Vol 45 (4) ◽  
pp. 574-580 ◽  
Author(s):  
F. Bonde-Petersen ◽  
L. B. Rowell ◽  
R. G. Murray ◽  
G. G. Blomqvist ◽  
R. White ◽  
...  

Ten men repeatedly performed leg exercise (100–150 W) for 7 min with 30-min recovery periods interspersed. Both legs were made ischemic by total occlusion (OCCL), first for 3 min immediately after exercise and second for 30 s before exercise ended and 3 min into recovery. In addition legs were occluded for 3 min at rest (seated). OCCL at rest increased mean arterial pressure (MAP) by 9 Torr but did not affect cardiac output (CO) or heart rate (HR). OCCL at the end of exercise significantly raised MAP and HR above control values during 3-min recovery but CO was unaffected. OCCL 30 s before the end of exercise further increased MAP and HR significantly during recovery; MAP, CO, and HR were significantly increased above control values (CO by 2.1 1-min-1) during the 3rd min of recovery. We conclude that a strong reflex from ischemic legs maintains normal or elevated CO during leg OCCL. Thus CO was too high relative to total vascular conductance so that MAP was elevated.


1999 ◽  
Vol 276 (6) ◽  
pp. H1902-H1910 ◽  
Author(s):  
João Carlos Callera ◽  
Leni G. H. Bonagamba ◽  
Anne Nosjean ◽  
Raul Laguzzi ◽  
Benedito H. Machado

In the present study we analyzed effects of bilateral microinjections of muscimol (a GABAA agonist) and baclofen (a GABAB agonist) into the nucleus tractus solitarius (NTS) on bradycardic and pressor responses to chemoreflex activation (potassium cyanide, 40 μg/rat iv) in awake rats. Bilateral microinjections of muscimol (25 and 50 pmol/50 nl) into the NTS increased baseline mean arterial pressure (MAP): 119 ± 8 vs. 107 ± 2 mmHg ( n = 6) and 121 ± 8 vs. 103 ± 3 mmHg ( n= 6), respectively. Muscimol at 25 pmol/50 nl reduced the bradycardic response to chemoreflex activation 5 min after microinjection; with 50 pmol/50 nl the bradycardic response to chemoreflex activation was reduced 5, 15, 30, and 60 min after microinjection. Neither muscimol dose produced an effect on the pressor response of the chemoreflex. Effects of muscimol (50 pmol/50 nl) on basal MAP and on the bradycardic response of the chemoreflex were prevented by prior microinjection of bicuculline (a GABAA antagonist, 40 pmol/50 nl) into the NTS. Bilateral microinjections of baclofen (12.5 and 25 pmol/50 nl) into the NTS produced an increase in baseline MAP [137 ± 9 vs. 108 ± 4 ( n= 7) and 145 ± 5 vs. 105 ± 2 mmHg ( n = 7), respectively], no changes in basal heart rate, and no effects on the bradycardic response; 25 pmol/50 nl only attenuated the pressor response to chemoreflex activation. The data show that activation of GABAA receptors in the NTS produces a significant reduction in the bradycardic response, whereas activation of GABAB receptors produces a significant reduction in the pressor response of the chemoreflex. We conclude that 1) GABAA but not GABAB plays an inhibitory role in neurons of the lateral commissural NTS involved in the parasympathetic component of the chemoreflex and 2) attenuation of the pressor response of the chemoreflex by activation of GABAB receptors may be due to inhibition of sympathoexcitatory neurons in the NTS or may be secondary to the large increase in baseline MAP produced by baclofen.


Sign in / Sign up

Export Citation Format

Share Document