Aging-associated changes in whole cell K+ and L-type Ca2+ currents in rat ventricular myocytes

2000 ◽  
Vol 279 (3) ◽  
pp. H889-H900 ◽  
Author(s):  
Shi J. Liu ◽  
Richard P. Wyeth ◽  
Russell B. Melchert ◽  
Richard H. Kennedy

The effect of aging on cardiac membrane currents remains unclear. This study examined the inward rectifier K+ current ( I K1), the transient outward K+current ( I to), and the L-type Ca2+ channel current ( I Ca,L) in ventricular myocytes isolated from young adult (6 mo) and aged (>27 mo) Fischer 344 rats using whole cell patch-clamp techniques. Along with an increase in the cell size and membrane capacitance, aged myocytes had the same magnitude of peak I K1 with a greater slope conductance but displayed smaller steady-state I K1. Aged myocytes also had a greater I to with an increased rate of activation, but the I to inactivation kinetics, steady-state inactivation, and responsiveness to l-phenylephrine, an α1-adrenergic agonist, were unaltered. The magnitude of peak I Ca,L in aged myocytes was decreased and accompanied by a slower inactivation, but the I Ca,L steady-state inactivation was unaltered. Action potential duration in aged myocytes was prolonged only at 90% of full repolarization (APD90) when compared with the action potential duration of young adult myocytes. Aged myocytes from Long-Evans rats showed similar changes in I toand I Ca,L but an increased I K1. These results demonstrate aging-associated changes in action potential, in morphology, and in I K1, I to, and I Ca,L of rat ventricular myocytes that possibly contribute to the decreased cardiac function of aged hearts.

2008 ◽  
Vol 86 (9) ◽  
pp. 620-625 ◽  
Author(s):  
Ru-xing Wang ◽  
Wen-ping Jiang

To investigate the effects of S- and R-amlodipine (Aml) on action potential (AP) and L-type calcium channel current (ICa-L), the whole-cell patch-clamp technique was used on rat ventricular myocytes to record AP, ICa-L, peak currents, steady-state activation currents, steady-state inactivation currents, and recovery currents from inactivation with S-Aml and R-Aml at various concentrations. Increasing concentrations of S-Aml gradually shortened AP durations (APDs). At concentrations of 0.1, 0.5, 1, 5, and 10 μmol/L, S-Aml blocked 1.5% ± 0.2%, 25.4% ± 5.3%, 65.2% ± 7.3%, 78.4% ± 8.1%, and 94.2% ± 5.0% of ICa-L, respectively (p < 0.05), and the half-inhibited concentration was 0.62 ± 0.12 µmol/L. Current–voltage curves were shifted upward; steady-state activation and inactivation curves were shifted to the left. At these concentrations of S-Aml, the half-activation voltages were –16.01 ± 1.65, –17.61 ± 1.60, –20.17 ± 1.46, –21.87 ± 1.69, and –24.09 ± 1.87 mV, respectively, and the slope factors were increased (p < 0.05). The half-inactivation voltages were –27.16 ± 4.48, –28.69 ± 4.52, –31.19 ± 4.17, –32.63 ± 4.34, and –35.16 ± 4.46 mV, respectively, and the slope factors were increased (p < 0.05). The recovery times from inactivation of S-Aml were prolonged (p < 0.05). In contrast, R-Aml had no effect on AP and ICa-L (p > 0.05) at the concentrations tested. Thus, only S-Aml has calcium channel blockade activity, whereas R-Aml has none of the pharmacologic actions associated with calcium channel blockers.


2007 ◽  
Vol 107 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Jee Eun Chae ◽  
Duck Sun Ahn ◽  
Myung Hee Kim ◽  
Carl Lynch ◽  
Wyun Kon Park

Abstract Background: Despite prolongation of the QTc interval in humans during sevoflurane anesthesia, little is known about the mechanisms that underlie these actions. In rat ventricular myocytes, the effect of sevoflurane on action potential duration and underlying electrophysiologic mechanisms were investigated. Methods: The action potential was measured by using a current clamp technique. The transient outward K+ current was recorded during depolarizing steps from −80 mV, followed by brief depolarization to −40 mV and then depolarization up to +60 mV. The voltage dependence of steady state inactivation was determined by using a standard double-pulse protocol. The sustained outward current was obtained by addition of 5 mm 4-aminopyridine. The inward rectifier K+ current was recorded from a holding potential of −40 mV before their membrane potential was changed from −130 to 0 mV. Sevoflurane actions on L-type Ca2+ current were also obtained. Results: Sevoflurane prolonged action potential duration, whereas the amplitude and resting membrane potential remained unchanged. The peak transient outward K+ current at +60 mV was reduced by 18 ± 2% (P &lt; 0.05) and 24 ± 2% (P &lt; 0.05) by 0.35 and 0.7 mm sevoflurane, respectively. Sevoflurane had no effect on the sustained outward current. Whereas 0.7 mm sevoflurane did not shift the steady state inactivation curve, it accelerated the current inactivation (P &lt; 0.05). The inward rectifier K+ current at −130 mV was little altered by 0.7 mm sevoflurane. L-type Ca2+ current was reduced by 28 ± 3% (P &lt; 0.05) and 33 ± 1% (P &lt; 0.05) by 0.35 and 0.7 mm sevoflurane, respectively. Conclusions: Action potential prolongation by clinically relevant concentrations of sevoflurane is due to the suppression of transient outward K+ current in rat ventricular myocytes.


1995 ◽  
Vol 268 (6) ◽  
pp. H2321-H2328 ◽  
Author(s):  
S. Zhang ◽  
T. Sawanobori ◽  
H. Adaniya ◽  
Y. Hirano ◽  
M. Hiraoka

Effects of extracellular magnesium (Mg2+) on action potential duration (APD) and underlying membrane currents in guinea pig ventricular myocytes were studied by using the whole cell patch-clamp method. Increasing external Mg2+ concentration [Mg2+]o) from 0.5 to 3 mM produced a prolongation of APD at 90% repolarization (APD90), whereas 5 and 10 mM Mg2+ shortened it. [Mg2+]o, at 3 mM or higher, suppressed the delayed outward K+ current and the inward rectifier K+ current. Increases in [Mg2+]o depressed the peak amplitude and delayed the decay time course of the Ca2+ current (ICa), the latter effect is probably due to the decrease in Ca(2+)-induced inactivation. Thus 3 mM Mg2+ suppressed the peak ICa but increased the late ICa amplitude at the end of a 200-ms depolarization pulse, whereas 10 mM Mg2+ suppressed both components. Application of 10 mM Mg2+ shifted the voltage-dependent activation and inactivation by approximately 10 mV to more positive voltage due to screening the membrane surface charges. Application of manganese (1-5 mM) also caused dual effects on APD90, similar to those of Mg2+, and suppressed the peak ICa with slowed decay. These results suggest that the dual effects of Mg2+ on APD in guinea pig ventricular myocytes can be, at least in part, explained by its action on ICa with slowed decay time course in addition to suppressive effects on K+ currents.


2005 ◽  
Vol 102 (6) ◽  
pp. 1165-1173 ◽  
Author(s):  
Toshiya Shiga ◽  
Sandro Yong ◽  
Joseph Carino ◽  
Paul A. Murray ◽  
Derek S. Damron

Background Droperidol has recently been associated with cardiac arrhythmias and sudden cardiac death. Changes in action potential duration seem to be the cause of the arrhythmic behavior, which can lead to alterations in intracellular free Ca concentration ([Ca]i). Because [Ca]i and myofilament Ca sensitivity are key regulators of myocardial contractility, the authors' objective was to identify whether droperidol alters [Ca]i or myofilament Ca sensitivity in rat ventricular myocytes and to identify the cellular mechanisms responsible for these effects. Methods Freshly isolated rat ventricular myocytes were obtained from adult rat hearts. Myocyte shortening, [Ca]i, nitric oxide production, intracellular pH, and action potentials were monitored in cardiomyocytes exposed to droperidol. Langendorff perfused hearts were used to assess overall cardiac function. Results Droperidol (0.03-1 mum) caused concentration-dependent decreases in peak [Ca]i and shortening. Droperidol inhibited 35 mm KCl-induced increase in [Ca]i, with little direct effect on sarcoplasmic reticulum Ca stores. Droperidol had no effect on action potential duration but caused a rightward shift in the concentration-response curve to extracellular Ca for shortening, with no concomitant effect on peak [Ca]i. Droperidol decreased pHi and increased nitric oxide production. Droperidol exerted a negative inotropic effect in Langendorff perfused hearts. Conclusion These data demonstrate that droperidol decreases cardiomyocyte function, which is mediated by a decrease in [Ca]i and a decrease in myofilament Ca sensitivity. The decrease in [Ca]i is mediated by decreased sarcolemmal Ca influx. The decrease in myofilament Ca sensitivity is likely mediated by a decrease in pHi and an increase in nitric oxide production.


1993 ◽  
Vol 101 (4) ◽  
pp. 603-626 ◽  
Author(s):  
D L Campbell ◽  
Y Qu ◽  
R L Rasmusson ◽  
H C Strauss

Block of the calcium-independent transient outward K+ current, I(to), by 4-aminopyridine (4-AP) was studied in ferret right ventricular myocytes using the whole cell patch clamp technique. 4-AP reduces I(to) through a closed state blocking mechanism displaying "reverse use-dependent" behavior that was inferred from: (a) development of tonic block at hyperpolarized potentials; (b) inhibition of development of tonic block at depolarized potentials; (c) appearance of "crossover phenomena" in which the peak current is delayed in the presence of 4-AP at depolarized potentials; (d) relief of block at depolarized potentials which is concentration dependent and parallels steady-state inactivation for low 4-AP concentrations (V1/2 approximately -10 mV in 0.1 mM 4-AP) and steady-state activation at higher concentrations (V1/2 = +7 mV in 1 mM 4-AP, +15 mV in 10 mM 4-AP); and (e) reassociation of 4-AP at hyperpolarized potentials. No evidence for interaction of 4-AP with either the open or inactivated state of the I(to) channel was obtained from measurements of kinetics of recovery and deactivation in the presence of 0.5-1.0 mM 4-AP. At hyperpolarized potentials (-30 to -90 mV) 10 mM 4-AP associates slowly (time constants ranging from approximately 800 to 1,300 ms) with the closed states of the channel (apparent Kd approximately 0.2 mM). From -90 to -20 mV the affinity of the I(to) channel for 4-AP appears to be voltage insensitive; however, at depolarized potentials (+20 to +100 mV) 4-AP dissociates with time constants ranging from approximately 350 to 150 ms. Consequently, the properties of 4-AP binding to the I(to) channel undergo a transition in the range of potentials over which channel activation and inactivation occurs (-30 to +20 mV). We propose a closed state model of I(to) channel gating and 4-AP binding kinetics, in which 4-AP binds to three closed states. In this model 4-AP has a progressively lower affinity as the channel approaches the open state, but has no intrinsic voltage dependence of binding.


1993 ◽  
Vol 101 (4) ◽  
pp. 571-601 ◽  
Author(s):  
D L Campbell ◽  
R L Rasmusson ◽  
Y Qu ◽  
H C Strauss

Enzymatically isolated myocytes from ferret right ventricles (12-16 wk, male) were studied using the whole cell patch clamp technique. The macroscopic properties of a transient outward K+ current I(to) were quantified. I(to) is selective for K+, with a PNa/PK of 0.082. Activation of I(to) is a voltage-dependent process, with both activation and inactivation being independent of Na+ or Ca2+ influx. Steady-state inactivation is well described by a single Boltzmann relationship (V1/2 = -13.5 mV; k = 5.6 mV). Substantial inactivation can occur during a subthreshold depolarization without any measurable macroscopic current. Both development of and recovery from inactivation are well described by single exponential processes. Ensemble averages of single I(to) channel currents recorded in cell-attached patches reproduce macroscopic I(to) and indicate that inactivation is complete at depolarized potentials. The overall inactivation/recovery time constant curve has a bell-shaped potential dependence that peaks between -10 and -20 mV, with time constants (22 degrees C) ranging from 23 ms (-90 mV) to 304 ms (-10 mV). Steady-state activation displays a sigmoidal dependence on membrane potential, with a net aggregate half-activation potential of +22.5 mV. Activation kinetics (0 to +70 mV, 22 degrees C) are rapid, with I(to) peaking in approximately 5-15 ms at +50 mV. Experiments conducted at reduced temperatures (12 degrees C) demonstrate that activation occurs with a time delay. A nonlinear least-squares analysis indicates that three closed kinetic states are necessary and sufficient to model activation. Derived time constants of activation (22 degrees C) ranged from 10 ms (+10 mV) to 2 ms (+70 mV). Within the framework of Hodgkin-Huxley formalism, Ito gating can be described using an a3i formulation.


2008 ◽  
Vol 294 (4) ◽  
pp. H1597-H1608 ◽  
Author(s):  
Victor A. Maltsev ◽  
Vitaliy Reznikov ◽  
Nidas A. Undrovinas ◽  
Hani N. Sabbah ◽  
Albertas Undrovinas

Augmented and slowed late Na+ current ( INaL) is implicated in action potential duration variability, early afterdepolarizations, and abnormal Ca2+ handling in human and canine failing myocardium. Our objective was to study INaL modulation by cytosolic Ca2+ concentration ([Ca2+]i) in normal and failing ventricular myocytes. Chronic heart failure was produced in 10 dogs by multiple sequential coronary artery microembolizations; 6 normal dogs served as a control. INaL fine structure was measured by whole cell patch clamp in ventricular myocytes and approximated by a sum of fast and slow exponentials produced by burst and late scattered modes of Na+ channel gating, respectively. INaL greatly enhanced as [Ca2+]i increased from “Ca2+ free” to 1 μM: its maximum density increased, decay of both exponentials slowed, and the steady-state inactivation (SSI) curve shifted toward more positive potentials. Testing the inhibition of CaMKII and CaM revealed similarities and differences of INaL modulation in failing vs. normal myocytes. Similarities include the following: 1) CaMKII slows INaL decay and decreases the amplitude of fast exponentials, and 2) Ca2+ shifts SSI rightward. Differences include the following: 1) slowing of INaL by CaMKII is greater, 2) CaM shifts SSI leftward, and 3) Ca2+ increases the amplitude of slow exponentials. We conclude that Ca2+/CaM/CaMKII signaling increases INaL and Na+ influx in both normal and failing myocytes by slowing inactivation kinetics and shifting SSI. This Na+ influx provides a novel Ca2+ positive feedback mechanism (via Na+/Ca2+ exchanger), enhancing contractions at higher beating rates but worsening cardiomyocyte contractile and electrical performance in conditions of poor Ca2+ handling in heart failure.


2007 ◽  
Vol 292 (3) ◽  
pp. C1147-C1155 ◽  
Author(s):  
Xiao Yu ◽  
Xiao-Wei Chen ◽  
Peng Zhou ◽  
Lijun Yao ◽  
Tao Liu ◽  
...  

The hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, or cardiac ( If)/neuronal ( Ih) time- and voltage-dependent inward cation current channels, are conventionally considered as monovalent-selective channels. Recently we discovered that calcium ions can permeate through HCN4 and Ih channels in neurons. This raises the possibility of Ca2+ permeation in If, the Ih counterpart in cardiac myocytes, because of their structural homology. We performed simultaneous measurement of fura-2 Ca2+ signals and whole cell currents produced by HCN2 and HCN4 channels (the 2 cardiac isoforms present in ventricles) expressed in HEK293 cells and by If in rat ventricular myocytes. We observed Ca2+ influx when HCN/ If channels were activated. Ca2+ influx was increased with stronger hyperpolarization or longer pulse duration. Cesium, an If channel blocker, inhibited If and Ca2+ influx at the same time. Quantitative analysis revealed that Ca2+ flux contributed to ∼0.5% of current produced by the HCN2 channel or If. The associated increase in Ca2+ influx was also observed in spontaneously hypertensive rat (SHR) myocytes in which If current density is higher than that of normotensive rat ventricle. In the absence of EGTA (a Ca2+ chelator), preactivation of If channels significantly reduced the action potential duration, and the effect was blocked by another selective If channel blocker, ZD-7288. In the presence of EGTA, however, preactivation of If channels had no effects on action potential duration. Our data extend our previous discovery of Ca2+ influx in Ih channels in neurons to If channels in cardiac myocytes.


Sign in / Sign up

Export Citation Format

Share Document