Avoidance and approach learning motivated by stimulation of identical hypothalamic loci

1959 ◽  
Vol 197 (1) ◽  
pp. 153-157 ◽  
Author(s):  
George W. Brown ◽  
Bertram D. Cohen

Cats with stimulating electrodes implanted in the lateral hypothalamus were subjected to two types of experimental procedures. In the first procedure the cats were given an opportunity to learn to avoid hypothalamic stimulation which produces a typical ‘hypothalamic rage’ response. The second procedure allows the same cats to learn to approach an area where the hypothalamic stimulus is administered. In both procedures, electrical stimulation was delivered through identical electrodes, yet each animal learned the appropriate avoidance or approach response, depending upon the experimental conditions. Therefore, lateral hypothalamic stimulation may act as an energizing, drive-arousing, operation to produce both avoidance and approach learning in cats.

1969 ◽  
Vol 47 (1) ◽  
pp. 109-111 ◽  
Author(s):  
G. J. Mogenson

Rats that received electrical stimulation of the drinking system in the lateral hypothalamus did not excrete a significantly different volume of urine in the 2-h period following a stomach water load. It is concluded that electrical stimulation of the lateral hypothalamic region which evokes drinking does not also activate the antidiuretic system.


1962 ◽  
Vol 39 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Roger A. Gorski ◽  
Charles A. Barraclough

ABSTRACT We have previously suggested that the failure of the androgen-sterilized, persistent-oestrous rat to ovulate, following electrical stimulation of the median eminence structures of the hypothalamus, is due to an insufficiency in adenohypophyseal LH concentration. Using the ovarian ascorbic acid technique for quantitative determination of pituitary LH content, the present studies have demonstrated that the sterile rat pituitary gland contains one-third the LH content of the normal prooestrous gland. Furthermore, not only does progesterone priming of this persistent-oestrous rat result in a 75 % increase in LH concentration, but on hypothalamic stimulation sufficient LH is released to induce ovulation. The decrease in LH concentration which accompanies ovulation in the progesterone-primed, sterile rat is approximately 45 % of the total gland content as compared with a 51 % decrease in pituitary content in the normal cyclic rat.


1996 ◽  
Vol 67 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Marcus Wenner ◽  
Noriyuki Kawamura ◽  
Hitoshi Miyazawa ◽  
Yukihiro Ago ◽  
Toshio Ishikawa ◽  
...  

1966 ◽  
Vol 51 (2) ◽  
pp. 281-289 ◽  
Author(s):  
J. Moll ◽  
G. H. Zeilmaker

ABSTRACT Castrated young adult inbred male rats bearing ovarian transplants were subjected to electrical stimulation of the hypothalamus. This was done in order to investigate whether discharge of ovulatory amounts of gonadotrophins could be induced in such male animals by this procedure. Bilateral stimulations with unipolar electrodes and a DC current of 1.5 mA applied during 10 seconds induced in the ovarian grafts histological changes indicating the discharge of ovulatory amounts of gonadotrophins. In animals killed one day after stimulation these changes consisted of displacement of the ova towards the centre of the follicles with loosening of the cumulus oophorus. In one animal the ova had left the follicles. In animals killed three days after stimulation numerous young corpora lutea could be observed. These results were obtained with electrode tips either close to the median eminence, or in the preoptic area. Shamstimulations were ineffective. Some of the experimental animals received progesterone pretreatment. This rendered the stimulations ineffective, if continued until the day preceding stimulation, but seemed without effect on the results of stimulation, if two or three days without progesterone preceded the stimulations.


1970 ◽  
Vol 22 (2) ◽  
pp. 125-132 ◽  
Author(s):  
J. E. Blundell ◽  
L. J. Herberg

The diencephalic area most sensitive to microinjections of noradrenaline lay outside the area of the lateral hypothalamus in which feeding can be produced by electrical stimulation. Injection of either area, including injections that caused increased feeding, failed to have any effect on hoarding activity. Since hoarding can be elicited both by food deprivation and by electrical stimulation of the lateral hypothalamus, these findings indicate biochemical, anatomical and motivational differences between the central feeding mechanism sensitive to adrenergic stimulation, and that responding to electrical stimulation or nutritional depletion. The former mechanism may be disinhibitory; the latter, excitatory.


1958 ◽  
Vol 196 (1) ◽  
pp. 44-48 ◽  
Author(s):  
John W. Mason

Substantial plasma 17-OH-CS elevations invariably occurred during electrical stimulation of the amygdaloid complex in unanesthetized rhesus monkeys through chronically implanted electrodes. No evidence of localization of this effect within anatomical subdivisions of the amygdaloid complex was observed. Stimulation of the amygdala elicited plasma 17-OH-CS elevations (20 µg %/hr.) equal to those occurring with hypothalamic stimulation or injection of a large dose of ACTH (16 mg/kg), while no elevations were observed during putamen stimulation or under normal conditions.


2007 ◽  
Vol 98 (3) ◽  
pp. 1102-1107 ◽  
Author(s):  
Serajul I. Khan ◽  
John A. Burne

Muscle cramp was induced in one head of the gastrocnemius muscle (GA) in eight of thirteen subjects using maximum voluntary contraction when the muscle was in the shortened position. Cramp in GA was painful, involuntary, and localized. Induction of cramp was indicated by the presence of electromyographic (EMG) activity in one head of GA while the other head remained silent. In all cramping subjects, reflex inhibition of cramp electrical activity was observed following Achilles tendon electrical stimulation and they all reported subjective relief of cramp. Thus muscle cramp can be inhibited by stimulation of tendon afferents in the cramped muscle. When the inhibition of cramp-generated EMG and voluntary EMG was compared at similar mean EMG levels, the area and timing of the two phases of inhibition (I1, I2) did not differ significantly. This strongly suggests that the same reflex pathway was the source of the inhibition in both cases. Thus the cramp-generated EMG is also likely to be driven by spinal synaptic input to the motorneurons. We have found that the muscle conditions that appear necessary to facilitate cramp, a near to maximal contraction of the shortened muscle, are also the conditions that render the inhibition generated by tendon afferents ineffective. When the strength of tendon inhibition in cramping subjects was compared with that in subjects that failed to cramp, it was found to be significantly weaker under the same experimental conditions. It is likely that reduced inhibitory feedback from tendon afferents has an important role in generating cramp.


1980 ◽  
Vol 58 (5) ◽  
pp. 574-576 ◽  
Author(s):  
J. Ciriello ◽  
F. R. Calaresu

In 10 cats anaesthetized with chloralose the electrical activity of spontaneously active hypothalamic units was recorded for changes in discharge rate during electrical stimulation of renal afferent nerves. The discharge rate of 141 single units was altered by stimulation of either the ipsilateral or contralateral renal nerves. Most of the responsive units were located in the regions of lateral preoptic nucleus, lateral hypothalamus, and paraventricular nucleus. These results demonstrate that renal afferent nerves provide information to hypothalamic structures known to be involved in the regulation of arterial pressure and fluid balance.


1989 ◽  
Vol 46 (5) ◽  
pp. 907-912 ◽  
Author(s):  
Philip A. Healey ◽  
Iain S. McGregor ◽  
Bernard W. Balleine ◽  
Dale M. Atrens

Sign in / Sign up

Export Citation Format

Share Document