Physiological effects of extremely high X-ray intensities and dosages on mice

1960 ◽  
Vol 199 (6) ◽  
pp. 1101-1104 ◽  
Author(s):  
W. S. Moos ◽  
H. C. Mason ◽  
M. Counelis

The physiological effects of high-intensity x-irradiation (2 x 105 r/min.) and dosages of 1 x 106 r on mice (head and abdomen) were investigated. An increase in pulmonary and heart rates were observed. Electrocardiographic recordings after irradiation demonstrated reversal of wave components and increase of amplitudes. Blood counts present no changes except for a drop in leukocyte counts. Hemoglobin remained unchanged. A considerable increase in serum potassium was noted and some indications of methemoglobin production. Head-irradiated animals yielded a higher incidence of auricular congestion and brain hemorrhage in contrast to animals receiving abdominal irradiation.

Author(s):  
Gregory L. Finch ◽  
Richard G. Cuddihy

The elemental composition of individual particles is commonly measured by using energydispersive spectroscopic microanalysis (EDS) of samples excited with electron beam irradiation. Similarly, several investigators have characterized particles by using external monochromatic X-irradiation rather than electrons. However, there is little available information describing measurements of particulate characteristic X rays produced not from external sources of radiation, but rather from internal radiation contained within the particle itself. Here, we describe the low-energy (< 20 KeV) characteristic X-ray spectra produced by internal radiation self-excitation of two general types of particulate samples; individual radioactive particles produced during the Chernobyl nuclear reactor accident and radioactive fused aluminosilicate particles (FAP). In addition, we compare these spectra with those generated by conventional EDS.Approximately thirty radioactive particle samples from the Chernobyl accident were on a sample of wood that was near the reactor when the accident occurred. Individual particles still on the wood were microdissected from the bulk matrix after bulk autoradiography.


1995 ◽  
Vol 39 ◽  
pp. 109-117
Author(s):  
Burkhard Beckhoff ◽  
Birgit Kanngießer

X-ray focusing based on Bragg reflection at curved crystals allows collection of a large solid angle of incident radiation, monochromatization of this radiation, and condensation of the beam reflected at the crystal into a small spatial cross-section in a pre-selected focal plane. Thus, for the Bragg reflected radiation, one can achieve higher intensities than for the radiation passing directly to the same small area in the focal plane. In that case one can profit considerably from X-ray focusing in an EDXRF arrangement. The 00 2 reflection at Highly Oriented Pyrolytic Graphite (HOPG) crystals offers a very high intensity of the Bragg reflected beam for a wide range of photon energies. Furthermore, curvature radii smaller than 10 mm can be achieved for HOPG crystals ensuring efficient X-ray focusing in EDXRF applications. For the trace analysis of very small amounts of specimen material deposited on small areas of thin-filter backings, HOPG based X-ray focusing may be used to achieve a very high intensity of monochromatic excitation radiation.


1985 ◽  
Vol 40 (5-6) ◽  
pp. 364-372 ◽  
Author(s):  
P. Zipper ◽  
R. Wilfing ◽  
M. Kriechbaum ◽  
H. Durchschlag

Abstract The sulfhydryl enzyme malate synthase from baker’s yeast was X-irradiated with 6 kGy in air-saturated aqueous solution (enzyme concentration: ≃ 10 mg/ml; volume: 120 μl), in the absence or presence of the specific scavengers formate, superoxide dismutase, and catalase. After X-irradiation, a small aliquot of the irradiated solutions was tested for enzymic activity while the main portion was investigated by means of small-angle X-ray scattering. Additionally, an unir­radiated sample without additives was investigated as a reference. Experiments yielded the fol­lowing results: 1. X-irradiation in the absence of the mentioned scavengers caused considerable aggregation, fragmentation, and inactivation of the enzyme. The dose Dt37 for total (= repairable + non­-repayable) inactivation resulted as 4.4 kGy. The mean radius of gyration was found to be about 13 nm. The mean degree of aggregation was obtained as 5.7, without correction for fragmenta­tion. An estimation based on the thickness factor revealed that about 19% of material might be strongly fragmented. When this amount of fragments was accordingly taken into account, a value of 7.1 was obtained as an upper limit for the mean degree of aggregation. The observed retention of the thickness factor and the finding of two different cross-section factors are in full accord with the two-dimensional aggregation model established previously (Zipper and Durchschlag, Radiat. Environ. Biophys. 18, 99 - 121 (1980)). 2. The presence of catalytic amounts of superoxide dismutase and/or catalase, in the absence of formate, during X-irradiation reduced both aggregation and inactivation significantly. 3. The presence of formate (10 or 100 mᴍ) during X-irradiation led to a strong decrease of aggregation and inactivation. This effect was more pronounced with the higher formate concen­tration or when superoxide dismutase and/or catalase were simultaneously present during X-irradiation. The presence of formate also reduced the amount of fragments significantly. 4. The results clearly show that the aggregation and inactivation of malate synthase upon X-irradiation in aqueous solution are mainly caused by OH·; to a minor extent O·̄2 and H2O2 are additionally involved in the damaging processes.


2007 ◽  
Vol 50 (1) ◽  
pp. 95-99
Author(s):  
N. G. Ivanov ◽  
I. N. Konovalov ◽  
V. F. Losev ◽  
Yu. N. Panchenko
Keyword(s):  
X Ray ◽  

1986 ◽  
Author(s):  
Eiichi Sato ◽  
Hiroshi Isobe ◽  
Toru Yanagisawa ◽  
Fumihiko Hoshino
Keyword(s):  
X Ray ◽  

2012 ◽  
Vol 112 (11) ◽  
pp. 114904 ◽  
Author(s):  
Stefan P. Hau-Riege ◽  
Tommaso Pardini

2018 ◽  
Vol 89 (11) ◽  
pp. 115106 ◽  
Author(s):  
Genbai Chu ◽  
Tao Xi ◽  
Minghai Yu ◽  
Wei Fan ◽  
Yongqiang Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document