Plasma amino acid levels and development of hepatic gluconeogenesis in the newborn rat

1975 ◽  
Vol 229 (2) ◽  
pp. 466-473 ◽  
Author(s):  
Girard ◽  
I Guillet ◽  
J Marty ◽  
EB Marliss

The metabolism of endogenous and exogenous amino acids has been characterized during a 16-h fast after birth in the rat. Eighteen of 22 amino acids showed a decrease in plasma concentration up to 16 h, the most profound and sustained changes affecting those quantitatively important in gluconeogenesis. The hepatic accumulation of injected [14C]aminoisobutyric acid showed a progressive rise after birth. The in vivo conversion of 14C-labeled lactate, alanine, serine, and glutamine to [14C]glucose increased for 6 h, but all except glutamine showed a decline by 16 h. The in vitro conversion of several gluconeogenic substrates (10mM), however, increased with time in each instance. These data confirm that the capacity for hepatic gluconeogenesis and maintenance of blood glucose concentration appears immediately after birth. Nevertheless, profound hypoglycemia recurs at 16 h and responds only minimally and transiently to exogenous gluconeogenic substrate loads. In contrast, the fed newborn maintains normoglycemia, higher endogenous amino acid levels, and the capacity for substrate conversion at this time. The mechanism for stimulation of hepatic gluconeogenic pathways thus is present in both fasted and fed neonatal rats. However, owing to insufficient energy sources to sustain gluconeogenesis and to inadequate gluconeogenic substrate, the rat is unable to maintain normoglycemia if fasted 16 h.

1973 ◽  
Vol 51 (12) ◽  
pp. 933-941 ◽  
Author(s):  
Njanoor Narayanan ◽  
Jacob Eapen

The effect of cycloheximide in vitro and in vivo on the incorporation of labelled amino acids into protein by muscles, liver, kidneys, and brain of rats and pigeons was studied. In vitro incorporation of amino acids into protein by muscle microsomes, myofibrils, and myofibrillar ribosomes was not affected by cycloheximide. In contrast, administration of the antibiotic into intact animals at a concentration of 1 mg/kg body weight resulted in considerable inhibition of amino acid incorporation into protein by muscles, liver, kidneys, and brain. This inhibition was observed in all the subcellular fractions of these tissues during a period of 10–40 min after the administration of the precursor. Tissue homogenates derived from in vivo cycloheximide-treated animals did not show significant alteration in in vitro amino acid incorporation with the exception of brain, which showed a small but significant enhancement.


2021 ◽  
Author(s):  
Babu Sudhamalla ◽  
Anirban Roy ◽  
Soumen Barman ◽  
Jyotirmayee Padhan

The site-specific installation of light-activable crosslinker unnatural amino acids offers a powerful approach to trap transient protein-protein interactions both in vitro and in vivo. Herein, we engineer a bromodomain to...


1986 ◽  
Vol 250 (6) ◽  
pp. E686-E694 ◽  
Author(s):  
E. Ferrannini ◽  
E. J. Barrett ◽  
S. Bevilacqua ◽  
R. Jacob ◽  
M. Walesky ◽  
...  

Raised plasma free fatty acid (FFA) levels effectively impede glucose uptake in vivo, thereby conserving plasma glucose and sparing glycogen. To test whether FFA have any effect on blood amino acid levels, we infused Intralipid plus heparin or saline into healthy volunteers under four different experimental conditions: A) overnight fast; B) euglycemic hyperinsulinemia (approximately 100 microU/ml); C) hyperglycemic (approximately 200 mg/100 ml) hyperinsulinemia (approximately 50 microU/ml); and D) hyperglycemic (approximately 300 mg/100 ml) normoinsulinemia (approximately 20 microU/ml). In the fasting state (A), lipid infusion was associated with lower blood levels of most amino acids, both branched chain and glucogenic. This effect, however, could not be ascribed to lipid infusion alone, because plasma insulin levels were also stimulated. The clamp studies (B, C, and D) allowed to assess the influence of lipid on blood amino acid levels at similar plasma insulin and glucose levels. It was thus observed that lipid infusion has a significant hypoaminoacidemic effect of its own under both euglycemic (B) and hyperglycemic (C) conditions; this effect involved many glucogenic amino acids (alanine, glycine, phenylalanine, serine, threonine, and cystine) but none of the branched-chain amino acids (leucine, isoleucine, and valine). In marked contrast, normoinsulinemic hyperglycemia (D), with or without lipid infusion, caused no change in the blood level of any measured amino acid. We conclude that lipid infusion has a hypoaminoacidemic action. We also suggest that this action is permitted by insulin and may involve specific metabolic interactions (e.g., reduced availability of glucose-derived pyruvate or glycerophosphate) as well as enhanced uptake by the liver.


1999 ◽  
Vol 277 (2) ◽  
pp. F204-F210 ◽  
Author(s):  
Olga H. Brokl ◽  
William H. Dantzler

Amino acids are apparently recycled between loops of Henle and vasa recta in the rat papilla in vivo. To examine more closely papillary amino acid transport, we measured transepithelial fluxes ofl-[14C]alanine and [14C]taurine in thin limbs of Henle’s loops isolated from rat papilla and perfused in vitro. In descending thin limbs (DTL) in vitro, unidirectional bath-to-lumen fluxes tended to exceed unidirectional lumen-to-bath fluxes for both radiolabeled amino acids, although the difference was statistically significant only for taurine. In ascending thin limbs (ATL) in vitro, unidirectional lumen-to-bath fluxes tended to exceed unidirectional bath-to-lumen fluxes, although the difference was again statistically significant only for taurine. These results are compatible with apparent directional movements of amino acids in vivo. However, none of the unidirectional fluxes was saturable or inhibitable, an observation compatible with apparent reabsorption from the ATL in vivo but not compatible with apparent movement from vasa recta to DTL in vivo. There was no evidence of net active transepithelial transport when concentrations of radiolabeled amino acids were matched on both sides of perfused tubule segments. These data suggest that regulation of amino acid movement in vivo may involve the vasa recta, not the DTL of Henle’s loops. The data also suggest that transepithelial movement of amino acids in thin limbs of Henle’s loop may occur via a paracellular route.


1987 ◽  
Vol 252 (4) ◽  
pp. R768-R773
Author(s):  
M. A. Lang

The euryhaline crab, Callinectes sapidus, behaves both as an osmoregulator when equilibrated in salines in the range of 800 mosM and below and an osmoconformer when equilibrated in salines above 800 mosM. There exists a close correlation between osmoregulation seen in the whole animal in vivo and cell volume regulation studied in vitro. Hyperregulation of the hemolymph osmotic pressure and cell volume regulation both occurred in salines at approximately 800 mosM and below. During long-term equilibration of the crabs to a wide range of saline environments, the total concentration of hemolymph amino acids plus taurine remained below 3 mM. During the first 6 h after an acute osmotic stress to the whole animal, the hemolymph osmotic pressure and Na activity gradually decreased, whereas the free amino acids remained below 3 mM. As the hemolymph osmotic pressure decreased below approximately 850 mosM, the amino acid level began to increase to 17-25 mM. This change was primarily due to increases in glycine, proline, taurine, and alanine. The likely source of the increase in hemolymph free amino acids in vivo is the free amino acid loss from muscle cells observed during cell volume regulation in vitro.


1960 ◽  
Vol 198 (1) ◽  
pp. 54-56 ◽  
Author(s):  
Ira G. Wool

When diaphragms isolated from normal rats were incubated with a C14-amino acid the addition of epinephrine or norepinephrine decreased incorporation of C14 into muscle protein. The inhibition occurred whether epinephrine was added in vitro or administered in vivo. The minimal effective concentration of epinephrine in vitro was 0.1 µg/ml. When the glucose concentration in the medium was raised to 300 mg % or more the epinephrine induced inhibition of amino acid incorporation into muscle protein was no longer observed.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2937-2937
Author(s):  
Antonio R Lucena-Araujo ◽  
Bárbara A Santana-Lemos ◽  
Carol H Thome ◽  
Germano A Ferreira ◽  
Davide Ruggero ◽  
...  

Abstract The X-linked form of dyskeratosis congenita (X-DC) is caused by mutations in DKC1, which encodes for dyskerin: a putative pseudouridine synthase that mediate the posttranscriptional modification of ribosomal RNA (rRNA) through the conversion of uridine (U) to pseudouridine (Ψ). Patients with X-DC display defects in the pseudouridylation of ribosomal RNA that leads to translational upregulation of IRES-containing mRNAs and affects the affinity of the ribosome for these mRNAs. Studies in vivo and in vitro suggest that the pseudouridylation of ribosomal RNA is the underlying mechanism responsible for the enhanced susceptibility to cancer in these patients. Ruggero et al. have previously reported (Ruggero et al. Science. 2003 Jan 10;299(5604):259-62) that hypomorphic Dkc1m (Dkc1m) mice present pancytopenia associated with hypocellularity of the bone marrow (BM) and increased susceptibility to cancer, therefore constituting a reliable model to study the effect of impaired ribogenesis on hematopoiesis and oncogenesis. However, the cellular and molecular mechanisms leading to BM failure in X-DC remain unknown. Here, we describe the in vivo analysis of the proliferation rate of hematopoietic progenitors in Dkc1m mice and compare the proteomic profile of hematopoietic progenitors between Dkc1m mice and wild-type (WT) controls. For in vivo proliferation assays, 1mg of bromodeoxyuridine (BrdU) was injected intraperitoneally, every 6 hours during 24 hours, in 16 mice (eight WT and eight Dkc1m), and BM cells were harvested by flushing bone cavity, followed by immunofluorescence staining of incorporated BrdU and flow cytometric analysis. No differences were detected in the number of lineage-negative (Lin−), Sca1-positive, c-kit-negative (LSK−) cells, multipotent precursors (MPP), common myeloid progenitors (CMP), common lymphoid progenitors (CLP) and immature B (B lin) and erythroid (Eryt) cells between Dkc1m and WT mice. Nevertheless, the BrdU incorporation was lower in LSK cells and CMPs from Dkc1m mice (P<0.05), indicating a lower proliferation rate. Using in vitro stable isotope labelling of amino acids (SILAC) hematopoietic progenitor cells were cultured in complete medium containing 10% fetal bovine serum and cytokines (6 ng/ml mIL-3, 10 ng/ml mIL-6 and 100 ng/ml mSCF). Of note, SILAC is one of the most applied approaches for quantitative proteomics, which uses labeled amino acids contain atoms of different isotopes in cell culture. Briefly, one cell population is cultured in unlabeled medium (control), while a second population is grown in medium substituted with a heavy amino acid (usually arginine 13C and/or lysine 15N). After 2-3 weeks culture, murine hematopoietic progenitors were collected and equal amounts of cells from Dkc1m and WT mice (labeled or not with heavy amino acid) were mixed for protein extraction and analyses. Using this approach, we identified about 3,500 differentially expressed proteins; including proteins related to mRNA assembling and splicing, chromatin remodeling, apoptosis and cell cycle arrest. Interestingly, one of the most differentially expressed proteins between WT and Dkc1m mice (WT light /Dkc1m heavy ratio: 18-fold) was the Serine/arginine-rich splicing factor 4(Srsf4); a member of the splicing factor family (SRSF1, SRSF3 and SRSF4) frequently associated with alternative splicing of genes related to hematopoietic progenitor cell differentiation. Altogether, our preliminary results reveal defects in the transcription/translation of specific mRNAs in Dkc1m cells. Additionally, it is conceivable that the down-regulation of Srsf4 protein could be associated with the low proliferative rate in DKC1m mice and explain the impairment of hematopoiesis in X-DC patients. Disclosures No relevant conflicts of interest to declare.


1990 ◽  
Vol 268 (3) ◽  
pp. 799-802 ◽  
Author(s):  
A E Tedstone ◽  
V Ilic ◽  
D H Williamson

Measurements of the tissue accumulation in vivo and in vitro by hepatocytes and mammary-gland acini of alpha-amino[1-14C]isobutyrate ([1-14C]AIB) were compared in virgin and lactating rats. The results indicate the existence of a reciprocal relationship between mammary gland and liver for AIB accumulation that is dependent on the lactational and the nutritional state of the rat. This suggests that amino acids are preferentially directed to the mammary gland during active lactation.


2000 ◽  
Vol 27 (7) ◽  
pp. 677 ◽  
Author(s):  
Giuseppe Forlani ◽  
Barbara Lejczak ◽  
Pawel Kafarski

The effect of the herbicidally active compound N-2-(5-chloro-pyridyl)aminomethylene bisphosphonic acid (Cl-pyr-AMBPA), previously found in vitro to inhibit the activity of the first enzyme in the shikimate pathway 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, was investigated in vivo on suspension cultured cells of Nicotiana plumbaginifolia Viviani. Amino acid pool measurement showed an actual reduction of tyrosine, tryptophan and phenylalanine level following the addition of the compound to the growth medium. However, an even stronger effect was noticed for other amino acids, mainly glutamine. When the activity of the enzymes involved in the glutamate cycle was measured in the presence of Cl-pyr-AMBPA, glutamate synthase was unaffected, while glutamine synthetase was significantly inhibited. Contrary to the herbicide phosphinothricin, the inhibitor bound reversibly to the enzyme. Kinetic analysis accounted for an inhibition of uncompetitive type with respect to ammonium, glutamate and ATP, withKivalues of 113, 97 and 39 M, respectively. Only the exogenous supply of a mixture of glutamine and aromatic amino acids relieved cell growth inhibition, suggesting that the phytotoxic properties of Cl-pyr-AMBPA are due to inhibition of key enzymes in both the corresponding pathways.


Sign in / Sign up

Export Citation Format

Share Document