Microvascular control in intestinal mucosa of normal and hemorrhaged rats

1975 ◽  
Vol 229 (5) ◽  
pp. 1159-1164 ◽  
Author(s):  
HG Bohlen ◽  
PM Hutchins ◽  
CE Rapela ◽  
HD Green

The mucosal microcirculation in innervated and denervated small intestine was studied using anesthetized rats. Denervation did not cause significant (P greater than 0.05) diameter changes in the precapillary vasculature; however, venules did constrict significantly. These results indicate minimum neural control in the precapillary vasculature during the resting state. The innervated precapillary vasculature constricted during both the carotid occlusion reflex and hemorrhagic hypotension. The diameter of the denervated precapillary vasculature was unchanged during the carotid occlusion reflex and dilated during hemorrhage. The responses of innervated and denervated precapillary vasculatures were attributed to increased neural activity and autoregulatory mechanisms, respectively. Neither innervated nor denervated venules responded during the carotid occlusion reflex. During hemorrhage, however, innervated venules constricted and denervated vessels dilated. The vasoconstriction of the innervated vasculature during hemorrhage contributed to a stoppage of blood and epithelial detachment; these responses did not occur in the dilated, denervated vasculature. Therefore, neural vasoconstriction, qualitatively similar to that in normal animals during the baroreceptor reflex, is a contributing cause to the vascular and tissue impairment in the intestinal mucosa during hemorrhage.

2007 ◽  
Vol 22 (6) ◽  
pp. 430-435 ◽  
Author(s):  
Dâmaso de Araújo Chacon ◽  
Irami Araújo-Filho ◽  
Arthur Villarim-Neto ◽  
Amália Cínthia Meneses Rêgo ◽  
Ítalo Medeiros Azevedo ◽  
...  

PURPOSE: To evaluate the biodistribution of sodium pertecnetate (Na99mTcO4) in organs and tissues, the morphometry of remnant intestinal mucosa and ponderal evolution in rats subjected to massive resection of the small intestine. METHODS: Twenty-one Wistar rats were randomly divided into three groups of 7 animals each. The short bowel (SB) group was subjected to massive resection of the small intestine; the control group (C) rats were not operated on, and soft intestinal handling was performed in sham rats. The animals were weighed weekly. On the 30th postoperative day, 0.l mL of Na99mTcO4, with mean activity of 0.66 MBq was injected intravenously into the orbital plexus. After 30 minutes, the rats were killed with an overdose of anesthetic, and fragments of the liver, spleen, pancreas, stomach, duodenum, small intestine, thyroid, lung, heart, kidney, bladder, muscle, femur and brain were harvested. The biopsies were washed with 0.9% NaCl.,The radioactivity was counted using Gama Counter WizardTM 1470, PerkinElmer. The percentage of radioactivity per gram of tissue (%ATI/g) was calculated. Biopsies of the remaining jejunum were analysed by HE staining to obtain mucosal thickness. Analysis of variance (ANOVA) and the Tukey test for multiple comparisons were used, considering p<0.05 as significant. RESULTS: There were no significant differences in %ATI/g of the Na99mTcO4 in the organs of the groups studied (p>0.05). An increase in the weight of the SB rats was observed after the second postoperative week. The jejunal mucosal thickness of the SB rats was significantly greater than that of C and sham rats (p<0.05). CONCLUSION: In rats with experimentally-produced short bowel syndrome, an adaptive response by the intestinal mucosa reduced weight loss. The biodistribution of Na99mTcO4 was not affected by massive intestinal resection, suggesting that short bowel syndrome is not the cause of misleading interpretation, if an examination using this radiopharmaceutical is indicated.


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0015
Author(s):  
Dustin R. Grooms ◽  
Jed A. Diekfuss ◽  
Alexis B. Slutsky-Ganesh ◽  
Cody R. Criss ◽  
Manish Anand ◽  
...  

Background: Anterior cruciate ligament (ACL) injury is secondary to a multifactorial etiology encompassing anatomical, biological, mechanical, and neurological factors. The nature of the injury being primarily due to non-contact mechanics further implicates neural control as a key injury-risk factor, though it has received considerably less study. Purpose: To determine the contribution of neural activity to injury-risk mechanics in ecological sport-specific VR landing scenarios. Methods: Ten female high-school soccer players (15.5±0.85 years; 165.0±6.09 cm; 59.1±11.84 kg) completed a neuroimaging session to capture neural activity during a bilateral leg press and a 3D biomechanics session performing a header within a VR soccer scenario. The bilateral leg press involved four 30 s blocks of repeated bilateral leg presses paced to a metronome beat of 1.2 Hz with 30 s rest between blocks. The VR soccer scenario simulated a corner-kick, requiring the participant to jump and head a virtual soccer ball into a virtual goal (Figure 1A-E). Initial contact and peak knee flexion and abduction angles were extracted during the landing from the header as injury-risk variables of interest and were correlated with neural activity. Results: Evidenced in Table 1 and Figure 1 (bottom row), increased initial contact abduction, increased peak abduction, and decreased peak flexion were associated with increased sensory, visual-spatial, and cerebellar activity (r2= 0.42-0.57, p corrected < .05, z max > 3.1, table & figure 1). Decreased initial contact flexion was associated with increased frontal cortex activity (r2= 0.68, p corrected < .05, z max > 3.1). Conclusion: Reduced neural efficiency (increased activation) of key regions that integrate proprioceptive, visual-spatial, and neurocognitive activity for motor control may influence injury-risk mechanics in sport. The regions found to increase in activity in relation to higher injury-risk mechanics are typically activated to assist with spatial navigation, environmental interaction, and precise motor control. The requirement for athletes to increase their activity for more basic knee motor control may result in fewer neural resources available to maintain knee joint alignment, allocate environmental attention, and handle increased motor coordination demands. These data indicate that strategies to enhance efficiency of visual-spatial and cognitive-motor control during high demand sporting activities is warranted to improve ACL injury-risk reduction. [Figure: see text][Table: see text]


2013 ◽  
Vol 461 ◽  
pp. 565-569 ◽  
Author(s):  
Fang Wang ◽  
Kai Xu ◽  
Qiao Sheng Zhang ◽  
Yi Wen Wang ◽  
Xiao Xiang Zheng

Brain-machine interfaces (BMIs) decode cortical neural spikes of paralyzed patients to control external devices for the purpose of movement restoration. Neuroplasticity induced by conducting a relatively complex task within multistep, is helpful to performance improvements of BMI system. Reinforcement learning (RL) allows the BMI system to interact with the environment to learn the task adaptively without a teacher signal, which is more appropriate to the case for paralyzed patients. In this work, we proposed to apply Q(λ)-learning to multistep goal-directed tasks using users neural activity. Neural data were recorded from M1 of a monkey manipulating a joystick in a center-out task. Compared with a supervised learning approach, significant BMI control was achieved with correct directional decoding in 84.2% and 81% of the trials from naïve states. The results demonstrate that the BMI system was able to complete a task by interacting with the environment, indicating that RL-based methods have the potential to develop more natural BMI systems.


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0015
Author(s):  
Cody R. Criss ◽  
Dustin R. Grooms ◽  
Jed A. Diekfuss ◽  
Manish Anand ◽  
Alexis B. Slutsky-Ganesh ◽  
...  

Background: Anterior cruciate ligament (ACL) injuries predominantly occur via non-contact mechanisms, secondary to motor coordination errors resulting in aberrant frontal plane knee loads that exceed the thresholds of ligament integrity. However, central nervous system processing underlying high injury-risk motor coordination errors remain unknown, limiting the optimization of current injury reduction strategies. Purpose: To evaluate the relationships between brain activity during motor tasks with injury-risk loading during a drop vertical jump. Methods: Thirty female high school soccer players (16.10 ± 0.87 years, 165.10 ± 4.64 cm, 63.43 ± 8.80 kg) were evaluated with 3D biomechanics during a standardized drop vertical jump from a 30 cm box and peak knee abduction moment was extracted as the injury-risk variable of interest. A neuroimaging session to capture neural activity (via blood-oxygen-level-dependent signal) was then completed which consisted of 4 blocks of 30 seconds of repeated bilateral leg press action paced to a metronome beat of 1.2 Hz with 30 seconds rest between blocks. Knee abduction moment was evaluated relative to neural activity to identify potential neural contributors to injury-risk. Results: There was a direct relationship between increased landing knee abduction moment and increased neural activation within regions corresponding to the lingual gyrus, intracalcarine cortex, posterior cingulate cortex, and precuneus (r2= 0.68, p corrected < .05, z max > 3.1; Table 1 & Figure 1). Conclusion: Elevated activity in regions that integrate sensory, spatial, and attentional information may contribute to elevated frontal plane knee loads during landing. Interestingly, a similar activation pattern related to high-risk landing mechanics has been found in those following injury, indicating that predisposing factors to injury may be accentuated by injury or that modern rehabilitation does not recover prospective neural control deficits. These data uncover a potentially novel brain marker that could guide the discovery of neural-therapeutic targets that reduce injury risk beyond current prevention methods. [Table: see text][Figure: see text]


PEDIATRICS ◽  
1984 ◽  
Vol 73 (2) ◽  
pp. 218-224
Author(s):  
S. Rousset ◽  
O. Moscovici ◽  
P. Lebon ◽  
J. P. Barbet ◽  
P. Helardot ◽  
...  

Since the outbreaks of neonatal necrotizing enterocolitis occurring in maternity hospitals of Paris and suburbs in 1979-1980, it has been possible to examine by light and electron microscopy gut specimens from ten newborns with this illness. Coronavirus-like particles, enclosed in intracytoplasmic vesicles of damaged epithelial cells of the intestinal mucosa, were observed in the small intestine, appendix, and colon. The ultrastructural study, supported by bacteriologic findings, suggests the role of coronavirus-like particles in the appearance of the lesions. Secondary proliferation of mainly anaerobic bacteria, probably responsible for pneumatosis, may aggravate the disease.


2021 ◽  
Vol 15 ◽  
Author(s):  
Wen Chen ◽  
Qian Wu ◽  
Lu Chen ◽  
Jiang Zhou ◽  
Huan-Huan Chen ◽  
...  

PurposeThe purpose of the study was to investigate the brain functional alteration in patients with thyroid-associated ophthalmopathy (TAO) by evaluating the spontaneous neural activity changes using resting-state functional magnetic resonance imaging (rs-fMRI) with the amplitude of low-frequency fluctuation (ALFF) method.Materials and MethodsThe rs-fMRI data of 30 TAO patients (15 active and 15 inactive) and 15 healthy controls (HCs) were included for analyses. The ALFF values were calculated and compared among groups. Correlations between ALFF values and clinical metrics were assessed.ResultsCompared with HCs, active TAOs showed significantly decreased ALFF values in the left middle occipital gyrus, superior occipital gyrus, and cuneus. Compared with inactive TAOs, active TAOs showed significantly increased ALFF values in the bilateral precuneus. Additionally, inactive TAOs showed significantly decreased ALFF values in the left middle occipital gyrus, superior occipital gyrus, cuneus, and bilateral precuneus than HCs. The ALFF value in the right precuneus of TAOs was positively correlated with clinical activity score (r = 0.583, P &lt; 0.001) and Mini-Mental State Examination (MMSE) score (r = 0.377, P = 0.040), and negatively correlated with disease duration (r = −0.382, P = 0.037). Moreover, the ALFF value in the left middle occipital gyrus of TAOs was positively correlated with visual acuity (r = 0.441, P = 0.015).ConclusionTAO patients had altered spontaneous brain activities in the left occipital lobe and bilateral precuneus. The neuropsychological aspect of the disease should be noticed during clinical diagnosis and treatment.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Jian Guo ◽  
Ning Chen ◽  
Muke Zhou ◽  
Pian Wang ◽  
Li He

Background: Transient ischemic attack (TIA) can increase the risk of some neurologic dysfunctions, of which the mechanism remains unclear. Resting-state functional MRI (rfMRI) is suggested to be a valuable tool to study the relation between spontaneous brain activity and behavioral performance. However, little is known about whether the local synchronization of spontaneous neural activity is altered in TIA patients. The purpose of this study is to detect differences in regional spontaneous activities throughout the whole brain between TIAs and normal controls. Methods: Twenty one TIA patients suffered an ischemic event in the right hemisphere and 21 healthy volunteers were enrolled in the study. All subjects were investigated using cognitive tests and rfMRI. The regional homogeneity (ReHo) was calculate and compared between two groups. Then a correlation analysis was performed to explore the relationship between ReHo values of brain regions showing abnormal resting-state properties and clinical variables in TIA group. Results: Compared with controls, TIA patients exhibited decreased ReHo in right dorsolateral prefrontal cortex (DLPFC), right inferior prefrontal gyrus, right ventral anterior cingulate cortex and right dorsal posterior cingular cortex. Moreover, the mean ReHo in right DLPFC and right inferior prefrontal gyrus were significantly correlated with MoCA in TIA patients. Conclusions: Neural activity in the resting state is changed in patients with TIA. The positive correlation between regional homogeneity of rfMRI and cognition suggests that ReHo may be a promising tool to better our understanding of the neurobiological consequences of TIA.


Sign in / Sign up

Export Citation Format

Share Document