scholarly journals Mitogen-activated protein kinase phosphatase 2, MKP-2, regulates early inflammation in acute lung injury

2012 ◽  
Vol 303 (3) ◽  
pp. L251-L258 ◽  
Author(s):  
Timothy T. Cornell ◽  
Andrew Fleszar ◽  
Walker McHugh ◽  
Neal B. Blatt ◽  
Ann Marie Le Vine ◽  
...  

Acute lung injury (ALI) is mediated by an early proinflammatory response resulting from either a direct or indirect insult to the lung mediating neutrophil infiltration and consequent disruption of the alveolar capillary membrane ultimately leading to refractory hypoxemia. The mitogen-activated protein kinase (MAPK) pathways are a key component of the molecular response activated by those insults triggering the proinflammatory response in ALI. The MAPK pathways are counterbalanced by a set of dual-specific phosphatases (DUSP) that deactivate the kinases by removing phosphate groups from tyrosine or threonine residues. We have previously shown that one DUSP, MKP-2, regulates the MAPK pathway in a model of sepsis-induced inflammation; however, the role of MKP-2 in modulating the inflammatory response in ALI has not been previously investigated. We utilized both MKP-2-null (MKP-2−/−) mice and MKP-2 knockdown in a murine macrophage cell line to elucidate the role of MKP-2 in regulating inflammation during ALI. Our data demonstrated attenuated proinflammatory cytokine production as well as decreased neutrophil infiltration in the lungs of MKP-2−/− mice following direct, intratracheal LPS. Importantly, when challenged with a viable pathogen, this decrease in neutrophil infiltration did not impact the ability of MKP-2−/− mice to clear either gram-positive or gram-negative bacteria. Furthermore, MKP-2 knockdown led to an attenuated proinflammatory response and was associated with an increase in phosphorylation of ERK and induction of a related DUSP, MKP-1. These data suggest that altering MKP-2 activity may have therapeutic potential to reduce lung inflammation in ALI without impacting pathogen clearance.

2008 ◽  
Vol 104 (2) ◽  
pp. 405-411 ◽  
Author(s):  
Maureen Mongan ◽  
Zongqing Tan ◽  
Liang Chen ◽  
Zhimin Peng ◽  
Maggie Dietsch ◽  
...  

2020 ◽  
Author(s):  
Ling Mao ◽  
Ya Zhou ◽  
Longqing Chen ◽  
Lin Hu ◽  
Shiming Liu ◽  
...  

Abstract Background: Acute lung injury (ALI) is a serious disease with highly morbidity and mortality that causes serious health problems worldwide. Atypical mitogen activated protein kinases (MAPKs) play critical roles in the development of tissues and have been proposed as promising therapeutic targets for various diseases. However, the potential role of atypical MAPKs in ALI remains elusive. In this study, we investigated the role of atypical MAPKs family member MAPK4 in ALI using LPS-induced murine ALI model. Results: We found that MAPK4 deficiency mice exhibited prolonged survival time after LPS challenge, accompanied by alleviated pathology in lung tissues, decreased levels of pro-inflammatory cytokines and altered composition of immune cells in BALF. Furthermore, the transduction of related signaling pathways, including MK5, AKT, JNK, and p38 MAPK pathways, was reduced obviously in LPS-treated MAPK4-/- mice. Notably, the expression of MAPK4 was up-regulated in lung tissues of ALI model, which was not related with MAPK4 promoter methylation, but negatively orchestrated by transcriptional factors NFKB1 and NR3C1. Further studies have shown that the expression of MAPK4 was also increased in LPS-treated macrophages. Meanwhile, MAPK4 deficiency reduced the expression of related pro-inflammatory cytokines in macrophage in response to LPS treatment. Finally, MAPK4 inhibition using shRNA pre-treatment could ameliorate the pathology of lung tissues and prolong the survival time of mice after LPS challenge. Conclusions: Collectively, these findings reveal an important biological function of atypical MAPK in mediating the pathology of ALI, indicating that MAPK4 might be a novel potential therapeutic target for ALI treatment.


Shock ◽  
2003 ◽  
Vol 19 (5) ◽  
pp. 475-479 ◽  
Author(s):  
Xu-Lin Chen ◽  
Zhao-Fan Xia ◽  
Dao-Feng Ben ◽  
Guang-Qing Wang ◽  
Duo Wei

Sign in / Sign up

Export Citation Format

Share Document