Gene transfer with inducible nitric oxide synthase decreases production of urea by arginase in pulmonary arterial endothelial cells

2006 ◽  
Vol 290 (2) ◽  
pp. L298-L306 ◽  
Author(s):  
Kate P. Stanley ◽  
Louis G. Chicoine ◽  
Tamara L. Young ◽  
Kristina M. Reber ◽  
C. Richard Lyons ◽  
...  

Nitric oxide (NO) is a vasodilator produced from l-arginine (l-Arg) by NO synthase (NOS). Gene therapy for hypertensive disorders has been proposed using the inducible isoform of NOS (iNOS). l-Arg also can be metabolized to urea and l-ornithine (l-Orn) by arginase, and l-Orn can be metabolized to proline and/or polyamines, which are vital for cellular proliferation. To determine the effect of iNOS gene transfer on arginase, we transfected bovine pulmonary arterial endothelial cells (bPAEC) with an adenoviral vector containing the gene for iNOS (AdiNOS). As expected, NO production in AdiNOS bPAEC was substantially greater than in control bPAEC. Although urea production was significantly less in the AdiNOS bPAEC than in the control bPAEC, despite similar levels of arginase I protein, AdiNOS transfection of bPAEC had no effect on the uptake of l-Arg. Inhibiting NO production with Nω-nitro-l-arginine methyl ester increased urea production, and inhibiting urea production with l-valine increased nitrite production, in AdiNOS bPAEC. The addition of l-Arg to the medium increased urea production by AdiNOS bPAEC in a concentration-dependent manner. Thus, in these iNOS-transfected bPAEC, the transfected iNOS and native arginase compete for a common intracellular pool of l-Arg. This competition for substrate resulted in impaired proliferation in the AdiNOS-transfected bPAEC. These findings suggest that the use of iNOS gene therapy for pulmonary hypertensive disorders may not only be beneficial through NO-mediated pulmonary vasodilation but also may decrease vascular remodeling by limiting l-Orn production by native arginase.

2004 ◽  
Vol 287 (1) ◽  
pp. L60-L68 ◽  
Author(s):  
Louis G. Chicoine ◽  
Michael L. Paffett ◽  
Tamara L. Young ◽  
Leif D. Nelin

Nitric oxide (NO) is produced by NO synthase (NOS) from l-arginine (l-Arg). Alternatively, l-Arg can be metabolized by arginase to produce l-ornithine and urea. Arginase (AR) exists in two isoforms, ARI and ARII. We hypothesized that inhibiting AR with l-valine (l-Val) would increase NO production in bovine pulmonary arterial endothelial cells (bPAEC). bPAEC were grown to confluence in either regular medium (EGM; control) or EGM with lipopolysaccharide and tumor necrosis factor-α (L/T) added. Treatment of bPAEC with L/T resulted in greater ARI protein expression and ARII mRNA expression than in control bPAEC. Addition of l-Val to the medium led to a concentration-dependent decrease in urea production and a concentration-dependent increase in NO production in both control and L/T-treated bPAEC. In a second set of experiments, control and L/T bPAEC were grown in EGM, EGM with 30 mM l-Val, EGM with 10 mM l-Arg, or EGM with both 10 mM l-Arg and 30 mM l-Val. In both control and L/T bPAEC, treatment with l-Val decreased urea production and increased NO production. Treatment with l-Arg increased both urea and NO production. The addition of the combination l-Arg and l-Val decreased urea production compared with the addition of l-Arg alone and increased NO production compared with l-Val alone. These data suggest that competition for intracellular l-Arg by AR may be involved in the regulation of NOS activity in control bPAEC and in response to L/T treatment.


2001 ◽  
Vol 281 (5) ◽  
pp. L1232-L1239 ◽  
Author(s):  
Leif D. Nelin ◽  
Heather E. Nash ◽  
Louis G. Chicoine

l-Arginine (l-Arg) is metabolized to nitric oxide (NO) by NO synthase (NOS) or to urea by arginase (AR). l-Arg is transported into bovine pulmonary arterial endothelial cells (BPAECs) by cationic amino acid transporter-2 (CAT-2). We hypothesized that cytokine treatment would increase l-Arg metabolism and increase CAT-2 mRNA expression. BPAECs were incubated for 24 h in medium (control) or medium with lipopolysaccharide and tumor necrosis factor-α (L-T). L-T increased nitrite production (3.1 ± 0.4 nmol/24 h vs. 1.8 ± 0.1 nmol/24 h for control; P< 0.01) and urea production (83.5 ± 29.5 nmol/24 h vs. 17.8 ± 8.6 nmol/24 h for control; P < 0.05). L-T-treated BPAECs had greater endothelial and inducible NOS mRNA expression compared with control cells. Increasing the medium l-Arg concentration resulted in increased nitrite and urea production in both the control and the L-T-treated BPAECs. L-T treatment resulted in measurable CAT-2 mRNA. L-T increasedl-[3H]Arg uptake (5.78 ± 0.41 pmol vs. 4.45 ± 0.10 pmol for control; P < 0.05). In summary, L-T treatment increased l-Arg metabolism to both NO and urea in BPAECs and resulted in increased levels of CAT-2 mRNA. This suggests that induction of NOS and/or AR is linked to induction of CAT-2 in BPAECs and may represent a mechanism for maintainingl-Arg availability to NOS and/or AR.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Hiroshi Ishida ◽  
Radharaman Ray ◽  
Jack Amnuaysirikul ◽  
Keiko Ishida ◽  
Prabhati Ray

Sulfur mustard (SM) is a chemical warfare agent that causes extensive skin injury. Previously we reported that SM exposure resulted in suppression of inducible nitric oxide synthase (iNOS) expression to inhibit the healing of scratch wounds in a cultured normal human epidermal keratinocyte (NHEK) model. Based on this finding, the present study was to use adenovirus-mediated gene transfer of iNOS to restore the nitric oxide (NO) supply depleted by exposure to SM and to evaluate the effect of NO on wound healing inhibited by SM in NHEKs. The effect of the iNOS gene transfer on iNOS protein expression and NO generation were monitored by Western blot and flow cytometry, respectively. Wound healing with or without the iNOS gene transfer after SM exposure was assessed by light and confocal microscopy. The iNOS gene transfer via adenovirus resulted in overexpression of the iNOS and an increase in NO production regardless of SM exposure in the NHEK model. The gene transfer was also effective in overcoming the inhibition of wound healing due to SM exposure leading to the promotion of wound closure. The findings in this study suggest that the iNOS gene transfer is a promising therapeutic strategy for SM-induced skin injury.


2009 ◽  
Vol 297 (4) ◽  
pp. L715-L728 ◽  
Author(s):  
Jason Lee ◽  
Reuben Reich ◽  
Fang Xu ◽  
Pravin B. Sehgal

Although the administration of monocrotaline (MCT) into experimental animals is in widespread use today in investigations of pulmonary arterial hypertension (PAH), the underlying cellular and subcellular mechanisms that culminate in vascular remodeling are incompletely understood. Bovine pulmonary arterial endothelial cells (PAECs) in culture exposed to monocrotaline pyrrole (MCTP) develop “megalocytosis” 18–24 h later characterized by enlarged hyperploid cells with enlarged Golgi, mislocalization of endothelial nitric oxide synthase away from the plasma membrane, decreased cell-surface/caveolar nitric oxide (NO), and hypo- S-nitrosylation of caveolin-1, clathrin heavy chain, and N-ethylmaleimide-sensitive factor. We investigated whether MCTP did in fact affect functional intracellular trafficking. The NO scavenger (4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) and the NO donor diethylamine NONOate were used for comparison. Both MCTP and c-PTIO produced distinctive four- to fivefold enlarged PAECs within 24–48 h with markedly enlarged/dispersed Golgi, as visualized by immunostaining for the Golgi tethers/matrix proteins giantin, GM130, and p115. Live-cell uptake of the Golgi marker C5 ceramide revealed a compact juxtanuclear Golgi in untreated PAECs, brightly labeled enlarged circumnuclear Golgi after MCTP, but minimally labeled Golgi elements after c-PTIO. These Golgi changes were reduced by NONOate. After an initial inhibition during the first day, both MCTP and c-PTIO markedly enhanced anterograde secretion of soluble cargo (exogenous vector-expressed recombinant horseradish peroxidase) over the next 4 days. Live-cell internalization assays using fluorescently tagged ligands showed that both MCTP and c-PTIO inhibited the retrograde uptake of acetylated low-density lipoprotein, transferrin, and cholera toxin B. Moreover, MCTP, and to a variable extent c-PTIO, reduced the cell-surface density of all receptors assayed (LDLR, TfnR, BMPR, Tie-2, and PECAM-1/CD31). In an important distinction, c-PTIO enhanced mitosis in PAECs but MCTP inhibited mitosis, even that due to c-PTIO, despite markedly exaggerated Golgi dispersal. Taken together, these data define a broad-spectrum Golgi and subcellular trafficking dysfunction syndrome in endothelial cells exposed to MCTP or NO scavenging.


2010 ◽  
Vol 298 (1) ◽  
pp. L105-L116 ◽  
Author(s):  
Sanjiv Kumar ◽  
Neetu Sud ◽  
Fabio V. Fonseca ◽  
Yali Hou ◽  
Stephen M. Black

Previous studies have indicated that acute increases in shear stress can stimulate endothelial nitric oxide synthase (eNOS) activity through increased PI3 kinase/Akt signaling and phosphorylation of Ser1177. However, the mechanism by which shear stress activates this pathway has not been adequately resolved nor has the potential role of reactive oxygen species (ROS) been evaluated. Thus, the purpose of this study was to determine if shear-mediated increases in ROS play a role in stimulating Ser1177 phosphorylation and NO signaling in pulmonary arterial endothelial cells (PAEC) exposed to acute increases in shear stress. Our initial studies demonstrated that although shear stress did not increase superoxide levels in PAEC, there was an increase in H2O2 levels. The increases in H2O2 were associated with a decrease in catalase activity but not protein levels. In addition, we found that acute shear stress caused an increase in eNOS phosphorylation at Ser1177 phosphorylation and a decrease in phosphorylation at Thr495. We also found that the overexpression of catalase significantly attenuated the shear-mediated increases in H2O2, phospho-Ser1177 eNOS, and NO generation. Further investigation identified a decrease in PKCδ activity in response to shear stress, and the overexpression of PKCδ attenuated the shear-mediated decrease in Thr495 phosphorylation and the increase in NO generation, and this led to increased eNOS uncoupling. PKCδ overexpression also attenuated Ser1177 phosphorylation through a posttranslational increase in catalase activity, mediated via a serine phosphorylation event, reducing shear-mediated increases in H2O2. Together, our data indicate that shear stress decreases PKCδ activity, altering the phosphorylation pattern catalase, leading to decreased catalase activity and increased H2O2 signaling, and this in turn leads to increases in phosphorylation of eNOS at Ser1177 and NO generation.


2002 ◽  
Vol 283 (1) ◽  
pp. L113-L119 ◽  
Author(s):  
Shiro Mizuno ◽  
Yoshiki Demura ◽  
Shingo Ameshima ◽  
Seitaro Okamura ◽  
Isamu Miyamori ◽  
...  

To investigate the effect of extracellular pH on endothelial nitric oxide synthase (eNOS) in human pulmonary arteries, we measured eNOS activity and expression as well as some ion channels in human pulmonary arterial endothelial cells (HPAEC) exposed to various pH levels (6.6–8.0). eNOS activity was found to increase with alkalization and decrease with acidification, while Ca2+ uptake into HPAEC increased with alkalization. The addition of 3′,4′-dichlorobenzamil hydrochloride, an inhibitor of the Na+/Ca2+ exchanger (NCX), prevented the increase of eNOS activity with alkalosis. Exposure to alkalosis and acidosis increased eNOS and NCX mRNA levels. These results suggest that an elevation of extracellular pH activates eNOS via the influx of extracellular Ca2+ and that NCX also regulates eNOS activity during alkalosis. Furthermore, NCX may have a tight interaction with eNOS at the level of transcription and might affect pulmonary circulation during alkalosis and acidosis.


Sign in / Sign up

Export Citation Format

Share Document