ENaC α-subunit variants are expressed in lung epithelial cells and are suppressed by oxidative stress

2007 ◽  
Vol 293 (6) ◽  
pp. L1454-L1462 ◽  
Author(s):  
Haishan Xu ◽  
Shijian Chu

Amiloride-sensitive epithelial sodium channel (ENaC) is a major sodium channel in the lung facilitating fluid absorption. ENaC is composed of α-, β-, and γ-subunits, and the α-subunit is indispensable for ENaC function in the lung. In human lungs, the α-subunit is expressed as various splice variants. Among them, α1- and α2-subunits are two major variants with different upstream regulatory sequences that possess similar channel characteristics when tested in Xenopus oocytes. Despite the importance of α-ENaC, little was known about the relative abundance of its variants in lung epithelial cells. Furthermore, lung infection and inflammation are often accompanied by reduced α-ENaC expression, oxidative stress, and pulmonary edema. However, it was not clear how oxidative stress affects expression of α-ENaC variants. In this study, we examined relative expression levels of α-subunit variants in four human lung epithelial cell lines. We also tested the hypothesis that oxidative stress inhibits α-ENaC expression. Our results show that both α1- and α2-ENaC variants are expressed in the cells we tested, but relative abundance varies. In the two monolayer-forming cell lines, H441 and Calu-3, α2-ENaC is the predominant variant. We also show that H2O2 specifically suppresses α1- and α2-ENaC variant expression in H441 and Calu-3 cells in a dose-dependent fashion. This suppression is achieved by inhibition of their promoters and is attenuated by dexamethasone. These data demonstrate the importance of the α2-subunit variant and suggest that glucocorticoids and antioxidants may be useful in correcting infection/inflammation-induced lung fluid imbalance.

2010 ◽  
Vol 24 (1) ◽  
pp. 310-318 ◽  
Author(s):  
William E. Wixted ◽  
Chris Kitson ◽  
Jayne C. Colebrook ◽  
Emma J. Roberts ◽  
Steven M. Fox ◽  
...  

2013 ◽  
Vol 377 (1-2) ◽  
pp. 237-237
Author(s):  
Vani Ramesh ◽  
Prabakaran Ravichandran ◽  
Clinton L. Copeland ◽  
Ramya Gopikrishnan ◽  
Santhoshkumar Biradar ◽  
...  

2004 ◽  
Vol 5 (1) ◽  
pp. 11 ◽  
Author(s):  
Jin Hyuk Choi ◽  
Jun Sung Kim ◽  
Young Chul Kim ◽  
Yoon Shin Kim ◽  
Nam Hyun Chung ◽  
...  

2013 ◽  
Vol 24 (6) ◽  
pp. 858-869 ◽  
Author(s):  
Sudjit Luanpitpong ◽  
Pithi Chanvorachote ◽  
Christian Stehlik ◽  
William Tse ◽  
Patrick S. Callery ◽  
...  

Hydrogen peroxide is a key mediator of oxidative stress known to be important in various cellular processes, including apoptosis. B-cell lymphoma-2 (Bcl-2) is an oxidative stress–responsive protein and a key regulator of apoptosis; however, the underlying mechanisms of oxidative regulation of Bcl-2 are not well understood. The present study investigates the direct effect of H2O2on Bcl-2 cysteine oxidation as a potential mechanism of apoptosis regulation. Exposure of human lung epithelial cells to H2O2induces apoptosis concomitant with cysteine oxidation and down-regulation of Bcl-2. Inhibition of Bcl-2 oxidation by antioxidants or by site-directed mutagenesis of Bcl-2 at Cys-158 and Cys-229 abrogates the effects of H2O2on Bcl-2 and apoptosis. Immunoprecipitation and confocal microscopic studies show that Bcl-2 interacts with mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2 [ERK1/2]) to suppress apoptosis and that this interaction is modulated by cysteine oxidation of Bcl-2. The H2O2-induced Bcl-2 cysteine oxidation interferes with Bcl-2 and ERK1/2 interaction. Mutation of the cysteine residues inhibits the disruption of Bcl-2–ERK complex, as well as the induction of apoptosis by H2O2. Taken together, these results demonstrate the critical role of Bcl-2 cysteine oxidation in the regulation of apoptosis through ERK signaling. This new finding reveals crucial redox regulatory mechanisms that control the antiapoptotic function of Bcl-2.


Sign in / Sign up

Export Citation Format

Share Document