Src protein tyrosine kinase family and acute inflammatory responses

2006 ◽  
Vol 291 (2) ◽  
pp. L129-L141 ◽  
Author(s):  
Daisuke Okutani ◽  
Monika Lodyga ◽  
Bing Han ◽  
Mingyao Liu

Acute inflammatory responses are one of the major underlying mechanisms for tissue damage of multiple diseases, such as ischemia-reperfusion injury, sepsis, and acute lung injury. By use of cellular and molecular approaches and transgenic animals, Src protein tyrosine kinase (PTK) family members have been identified to be essential for the recruitment and activation of monocytes, macrophages, neutrophils, and other immune cells. Src PTKs also play a critical role in the regulation of vascular permeability and inflammatory responses in tissue cells. Importantly, animal studies have demonstrated that small chemical inhibitors for Src PTKs attenuate tissue injury and improve survival from a variety of pathological conditions related to acute inflammatory responses. Further investigation may lead to the clinical application of these inhibitors as drugs for ischemia-reperfusion injury (such as stroke and myocardial infarction), sepsis, acute lung injury, and multiple organ dysfunction syndrome.

1997 ◽  
Vol 272 (3) ◽  
pp. H1302-H1308 ◽  
Author(s):  
E. Crockett-Torabi ◽  
J. C. Fantone

Neutrophils play an important role in myocardial ischemia-reperfusion injury. Neutrophil adhesion to the vascular endothelium is one of the important early mechanisms that lead to reperfusion injury. The leukocyte adhesion molecule, L-selectin, plays a major role in the initial interaction between neutrophils and endothelial cells. Intervention aimed at blocking selectins or their associated ligands can exert cardioprotective effects. The purpose of this study was to examine the role of L-selectin in the initiation of transmembrane signaling and regulation of canine neutrophil responses. Cross-linking of canine neutrophil L-selectin using anti-L-selectin antibody induced a rapid and transient increase in intracellular Ca2+ levels and superoxide anion generation that were dependent on the extent of L-selectin cross-linking. The responses were significantly inhibited by the protein tyrosine kinase inhibitor, genistein. The results demonstrate that ligation of canine neutrophil L-selectin is coupled to intracellular signal transduction pathways and the generation of second messengers, which may independently play important regulatory roles in modulating neutrophil-endothelial cell interactions.


2021 ◽  
Author(s):  
Can Jin ◽  
Shucheng Zhang ◽  
Linlin Wu ◽  
Bohan Li ◽  
Meimei Shi ◽  
...  

Abstract Rationale: It is unclear whether removing the danger-associated molecular patterns (DAMPs) of gut lymph (GL) in the rats of gut ischemia-reperfusion injury (GIRI) model may reduce the distant organ lung injury.Objective: To determine whether oXiris gut lymph purification (GLP) may remove the DAMPs of GL in the rats’ model of acute lung injury (ALI) caused by GIRI.Methods: The experimental rats were divided into four groups: Sham group, GIRI group, GIRI + gut lymph drainage (GLD) group, and GIRI + GLP group. After successful modeling, the lung tissue samples of rats in each group were taken for hematoxylin-eosin (HE) staining and detection of expression levels of apoptotic indexes. The level of DAMPs was detected in blood and lymph. We observed its microstructure of type II alveolar epithelial cells (AECⅡ), and detected the expression level of apoptosis indexes.Measurements and Main Results: GIRI-induced destruction of alveolar structure, thickened alveolar walls, inflammatory cell infiltration emerged in the GIRI group, HMGB-1 and IL-6 levels significantly increased, and HSP70 and IL-10 levels reduced in lymph and serum. Compared with GIRI group, the lung tissue damage in GIRI + GLP group significantly improved, the expression level of HMGB-1 and IL-6 in the lymph and serum reduced, and HSP70 and IL-10 increased. The organelle structure of AECII in GIRI + GLP group was significantly improved compared with the GIRI group. Conclusions: oXiris GLP blocks the key link between DAMPs and mononuclear phagocyte system to inhibit inflammation and cell apoptosis, thereby reducing ALI induced by GIRI.


2013 ◽  
Vol 93 (7) ◽  
pp. 792-800 ◽  
Author(s):  
Zhongwei Yang ◽  
Yuxiao Deng ◽  
Diansan Su ◽  
Jie Tian ◽  
Yuan Gao ◽  
...  

2019 ◽  
Vol 24 (6) ◽  
pp. 509-520 ◽  
Author(s):  
Eduardo Fuentes ◽  
Rodrigo Moore-Carrasco ◽  
Antonio Marcus de Andrade Paes ◽  
Andres Trostchansky

Myocardial infarction, commonly known as heart attack, evolves from the rupture of unstable atherosclerotic plaques to coronary thrombosis and myocardial ischemia–reperfusion injury. A body of evidence supports a close relationship between the alterations following an ischemia–reperfusion injury-induced oxidative stress and platelet activity. Through their critical role in thrombogenesis and inflammatory responses, platelets are fully (totally) implicated from atherothrombotic plaque formation to myocardial infarction onset and expansion. However, mere platelet aggregation prevention does not offer full protection, suggesting that other antiplatelet therapy mechanisms may also be involved. Thus, the present review discusses the integrative role of platelets, oxidative stress, and antiplatelet therapy in triggering myocardial infarction pathophysiology.


Sign in / Sign up

Export Citation Format

Share Document