Sterol response element binding protein and thyroid transcription factor-1 (Nkx2.1) regulate Abca3 gene expression

2007 ◽  
Vol 293 (6) ◽  
pp. L1395-L1405 ◽  
Author(s):  
Valérie Besnard ◽  
Yan Xu ◽  
Jeffrey A. Whitsett

The ATP-binding cassette (ABC) ABCA3 gene encodes a lipid transporter critical for surfactant function at birth. To identify transcription factors that regulate ABCA3 expression in the lung, we identified by bioinformatic and functional analyses two positive regulatory regions, located between bp −2591 and −1102 and bp −1102 and +11, relative to the exon 1 of the Abca3 gene promoter. The distal cassette contains consensus sequences predicting binding to lung transcription factors including FOXA2, CCAAT/enhancer binding protein-α (C/EBPα), GATA-6, thyroid transcription factor-1 (TTF-1 or Nkx2.1), and nuclear factor of activated T cells-c3 (NFATc3). The activity of the distal region from bp −2591 to −1102 was assessed in HeLa and mouse lung epithelial MLE-15 cells. FOXA2, C/EBPα, GATA-6, TTF-1, and NFATc3 increased the activity of the Abca3 luciferase construct in a dose-dependent manner. The distal cassette conferred activation by FOXA2, C/EBPα, GATA-6, TTF-1, and NFATc3 in a position- and orientation-independent manner, serving as an enhancer-like regulatory element. The proximal Abca3 promoter region contained multiple sterol responsive element (SRE) binding sites. SRE binding protein (SREBP)-1c significantly increased the activity of the Abca3 luciferase construct in a dose-dependent manner, whereas SREBP-1a and SREBP-2 did not influence the Abca3 promoter activity. Chromatin immunoprecipitation (ChIP) analyses demonstrated the binding of SREBP-1c, C/EBPα, and TTF-1 to their respective regulatory elements. Conditional deletion of SREBP cleavage-activating protein ( Scap) in respiratory epithelial cells in the mouse lung in vivo inhibited the expression of SREBPs in concert with Abca3. Abca3 gene expression is mediated by discrete cis-acting cassettes that mediate pulmonary cell- and lipid-sensitive pathways regulating surfactant homeostasis.

2000 ◽  
Vol 20 (22) ◽  
pp. 8499-8512 ◽  
Author(s):  
Minoru Nakazato ◽  
Hyun-Kyung Chung ◽  
Luca Ulianich ◽  
Antonino Grassadonia ◽  
Koichi Suzuki ◽  
...  

ABSTRACT Follicular thyroglobulin (TG) selectively suppresses the expression of thyroid-restricted transcription factors, thereby altering the expression of thyroid-specific proteins. In this study, we investigated the molecular mechanism by which TG suppresses the prototypic thyroid-restricted transcription factor, thyroid transcription factor 1 (TTF-1), in rat FRTL-5 thyrocytes. We show that the region between bp −264 and −153 on the TTF-1 promoter contains two nuclear factor I (NFI) elements whose function is involved in TG-mediated suppression. Thus, NFI binding to these elements is critical for constitutive expression of TTF-1; TG decreases NFI binding to the NFI elements in association with TG repression. NFI is a family of transcription factors that is ubiquitously expressed and contributes to constitutive and cell-specific gene expression. In contrast to the contribution of NFI proteins to constitutive gene expression in other systems, we demonstrate that follicular TG transcriptionally represses all NFI RNAs (NFI-A, -B, -C, and -X) in association with decreased NFI binding and that the RNA levels decrease as early as 4 h after TG treatment. Although TG treatment for 48 h results in a decrease in NFI protein-DNA complexes measured in DNA mobility shift assays, NFI proteins are still detectable by Western analysis. We show, however, that the binding of all NFI proteins is redox regulated. Thus, diamide treatment of nuclear extracts strongly reduces the binding of NFI proteins, and the addition of higher concentrations of dithiothreitol to nuclear extracts from TG-treated cells restores NFI-DNA binding to levels in extracts from untreated cells. We conclude that NFI binding to two NFI elements, at bp −264 to −153, positively regulates TTF-1 expression and controls constitutive TTF-1 levels. TG mediates the repression of TTF-1 gene expression by decreasing NFI RNA and protein levels, as well as by altering the binding activity of NFI, which is redox controlled.


2005 ◽  
Vol 90 (10) ◽  
pp. 5692-5697 ◽  
Author(s):  
Rocco Bruno ◽  
Elisabetta Ferretti ◽  
Emanuele Tosi ◽  
Franco Arturi ◽  
Paolo Giannasio ◽  
...  

Context: Evidence from in vitro studies or animal models has shown that TSH affects thyrocytes by thyroid-specific expression modulation. Objective: The objective of our study was to analyze the role of TSH in human thyroid gene expression in vivo. Design/Setting: Thirty-nine normal thyroid tissues were collected at the same center. Study Subjects: Patients were divided into two groups based on serum TSH levels: 17 with normal TSH levels (1–4 mU/liter; group 1) and 22 with TSH levels below 0.5 mU/liter (group 2). Intervention: Group 2 underwent thyroidectomy after suppressive l-T4 therapy. Main Outcome Measures: mRNA levels of thyroid genes such as sodium/iodide symporter (NIS), apical iodide transporter, pendrin, thyroglobulin, thyroperoxidase, TSH receptor, paired box transcription factor 8, and thyroid transcription factor-1 were evaluated by quantitative PCR. Results: The reduction of TSH stimulation causes decreases in NIS and apical iodide transporter gene expression in normal tissues and more limited reductions in thyroglobulin, thyroperoxidase, and paired box transcription factor 8, but it has no significant effect on TSH receptor, pendrin, or thyroid transcription factor-1. Comparison of NIS levels in normal and nodular tissues from the same patient confirmed that it is differentially expressed in nodules only in the presence of normal TSH (P < 0.01). In patients with suppressed TSH, nodular NIS levels were similar to those in normal tissues. Conclusions: Our data represent the first demonstration in human thyroid tissues that TSH contributes to the regulation of thyrocyte differentiation by modulating thyroid gene levels. It exerts a particularly important effect on the transcription of NIS, which becomes very low after prolonged TSH suppression.


FEBS Journal ◽  
2010 ◽  
Vol 278 (2) ◽  
pp. 282-294 ◽  
Author(s):  
Nicolas Jonckheere ◽  
Amélie Velghe ◽  
Marie-Paule Ducourouble ◽  
Marie-Christine Copin ◽  
Ingrid B. Renes ◽  
...  

1996 ◽  
Vol 150 (3) ◽  
pp. 377-382 ◽  
Author(s):  
C J H van der Kallen ◽  
D C J Spierings ◽  
J H H Thijssen ◽  
M A Blankenstein ◽  
T W A de Bruin

Abstract The mutant rat thyroid cell line FRTL-5/TA, isolated from a non-functional tumour which originated spontaneously from wild-type FRTL-5 cells, shows autonomous TSH-independent growth and loss of the thyroid-specific phenotype, lacking thyroid-specific expression of thyroglobulin (Tg) and thyroid peroxidase (TPO) genes. To investigate the role of the transcription factors Pax-8 and thyroid transcription factor-1 (TTF-1) in rat thyroid tumorigenesis, RNA expression of these two thyroid-specific nuclear factors was measured in FRTL-5/TA tumour cells and compared with the expression in wild-type FRTL-5 cells. TTF-1 gene expression was similar to that in wild-type FRTL-5, and showed a similar down-regulation after stimulation with TSH. The finding suggested normal TTF-1 mRNA and protein expression in both cell lines. By contrast, Pax-8 mRNA transcript signal was markedly reduced in FRTL-5/TA cells, reaching levels as low as 8% of the normal, basal level in FRTL-5 cells. These data indicated that the loss of thyroid-specific expression of Tg and TPO genes in FRTL-5/TA cells was not related to changes in TTF-1 gene expression but rather to reduced Pax-8 gene expression. It was concluded that a disruption of the co-ordinated expression of TTF-1 and Pax-8 is implicated in the loss of thyroid phenotype of FRTL-5/TA cells in terms of reduced Tg and TPO expression. Journal of Endocrinology (1996) 150, 377–382


Sign in / Sign up

Export Citation Format

Share Document