Modeling the effect of stretch and plasma membrane tension on Na+-K+-ATPase activity in alveolar epithelial cells

2007 ◽  
Vol 292 (1) ◽  
pp. L40-L53 ◽  
Author(s):  
Jacob L. Fisher ◽  
Susan S. Margulies

While a number of whole cell mechanical models have been proposed, few, if any, have focused on the relationship among plasma membrane tension, plasma membrane unfolding, and plasma membrane expansion and relaxation via lipid insertion. The goal of this communication is to develop such a model to better understand how plasma membrane tension, which we propose stimulates Na+-K+-ATPase activity but possibly also causes cell injury, may be generated in alveolar epithelial cells during mechanical ventilation. Assuming basic relationships between plasma membrane unfolding and tension and lipid insertion as the result of tension, we have captured plasma membrane mechanical responses observed in alveolar epithelial cells: fast deformation during fast cyclic stretch, slower, time-dependent deformation via lipid insertion during tonic stretch, and cell recovery after release from stretch. The model estimates plasma membrane tension and predicts Na+-K+-ATPase activation for a specified cell deformation time course. Model parameters were fit to plasma membrane tension, whole cell capacitance, and plasma membrane area data collected from the literature for osmotically swollen and shrunken cells. Predictions of membrane tension and stretch-stimulated Na+-K+-ATPase activity were validated with measurements from previous studies. As a proof of concept, we demonstrate experimentally that tonic stretch and consequent plasma membrane recruitment can be exploited to condition cells against subsequent cyclic stretch and hence mitigate stretch-induced responses, including stretch-induced cell death and stretch-induced modulation of Na+-K+-ATPase activity. Finally, the model was exercised to evaluate plasma membrane tension and potential Na+-K+-ATPase stimulation for an assortment of traditional and novel ventilation techniques.

1999 ◽  
Vol 87 (2) ◽  
pp. 715-721 ◽  
Author(s):  
Christopher M. Waters ◽  
Karen M. Ridge ◽  
G. Sunio ◽  
K. Venetsanou ◽  
Jacob Iasha Sznajder

Alveolar epithelial cells effect edema clearance by transporting Na+ and liquid out of the air spaces. Active Na+ transport by the basolaterally located Na+-K+-ATPase is an important contributor to lung edema clearance. Because alveoli undergo cyclic stretch in vivo, we investigated the role of cyclic stretch in the regulation of Na+-K+-ATPase activity in alveolar epithelial cells. Using the Flexercell Strain Unit, we exposed a cell line of murine lung epithelial cells (MLE-12) to cyclic stretch (30 cycles/min). After 15 min of stretch (10% mean strain), there was no change in Na+-K+-ATPase activity, as assessed by86Rb+uptake. By 30 min and after 60 min, Na+-K+-ATPase activity was significantly increased. When cells were treated with amiloride to block amiloride-sensitive Na+ entry into cells or when cells were treated with gadolinium to block stretch-activated, nonselective cation channels, there was no stimulation of Na+-K+-ATPase activity by cyclic stretch. Conversely, cells exposed to Nystatin, which increases Na+ entry into cells, demonstrated increased Na+-K+-ATPase activity. The changes in Na+-K+-ATPase activity were paralleled by increased Na+-K+-ATPase protein in the basolateral membrane of MLE-12 cells. Thus, in MLE-12 cells, short-term cyclic stretch stimulates Na+-K+-ATPase activity, most likely by increasing intracellular Na+ and by recruitment of Na+-K+-ATPase subunits from intracellular pools to the basolateral membrane.


2001 ◽  
Vol 280 (5) ◽  
pp. L938-L946 ◽  
Author(s):  
Nicholas E. Vlahakis ◽  
Mark A. Schroeder ◽  
Richard E. Pagano ◽  
Rolf D. Hubmayr

Mechanical ventilation with a high tidal volume results in lung injury that is characterized by blebbing and breaks both between and through alveolar epithelial cells. We developed an in vitro model to simulate ventilator-induced deformation of the alveolar basement membrane and to investigate, in a direct manner, epithelial cell responses to deforming forces. Taking advantage of the novel fluorescent properties of BODIPY lipids and the fluorescent dye FM1-43, we have shown that mechanical deformation of alveolar epithelial cells results in lipid transport to the plasma membrane. Deformation-induced lipid trafficking (DILT) was a vesicular process, rapid in onset, and was associated with a large increase in cell surface area. DILT could be demonstrated in all cells; however, only a small percentage of cells developed plasma membrane breaks that were reversible and nonlethal. Therefore, DILT was not only involved in site-directed wound repair but might also have served as a cytoprotective mechanism against plasma membrane stress failure. This study suggests that DILT is a regulatory mechanism for membrane trafficking in alveolar epithelia and provides a novel biological framework within which to consider alveolar deformation injury and repair.


2011 ◽  
Vol 300 (4) ◽  
pp. L569-L578 ◽  
Author(s):  
Juan Carlos Caraballo ◽  
Cecilia Yshii ◽  
Maria L. Butti ◽  
Whitney Westphal ◽  
Jennifer A. Borcherding ◽  
...  

During pulmonary edema, the alveolar space is exposed to a hypoxic environment. The integrity of the alveolar epithelial barrier is required for the reabsorption of alveolar fluid. Tight junctions (TJ) maintain the integrity of this barrier. We set out to determine whether hypoxia creates a dysfunctional alveolar epithelial barrier, evidenced by an increase in transepithelial electrical conductance (Gt), due to a decrease in the abundance of TJ proteins at the plasma membrane. Alveolar epithelial cells (AEC) exposed to mild hypoxia (Po2= 50 mmHg) for 30 and 60 min decreased occludin abundance at the plasma membrane and significantly increased Gt. Other cell adhesion molecules such as E-cadherin and claudins were not affected by hypoxia. AEC exposed to hypoxia increased superoxide, but not hydrogen peroxide (H2O2). Overexpression of superoxide dismutase 1 (SOD1) but not SOD2 prevented the hypoxia-induced Gtincrease and occludin reduction in AEC. Also, overexpression of catalase had a similar effect as SOD1, despite not detecting any increase in H2O2during hypoxia. Blocking PKC-ζ and protein phosphatase 2A (PP2A) prevented the hypoxia-induced occludin reduction at the plasma membrane and increase in Gt. In summary, we show that superoxide, PKC-ζ, and PP2A are involved in the hypoxia-induced increase in Gtand occludin reduction at the plasma membrane in AEC.


2004 ◽  
Vol 287 (6) ◽  
pp. L1266-L1273 ◽  
Author(s):  
Brandy L. Daugherty ◽  
Madalina Mateescu ◽  
Anand S. Patel ◽  
Kelly Wade ◽  
Shioko Kimura ◽  
...  

Tight junction proteins in the claudin family regulate epithelial barrier function. We examined claudin expression by human fetal lung (HFL) alveolar epithelial cells cultured in medium containing dexamethasone, 8-bromo-cAMP, and isobutylmethylxanthanine (DCI), which promotes alveolar epithelial cell differentiation to a type II phenotype. At the protein level, HFL cells expressed claudin-1, claudin-3, claudin-4, claudin-5, claudin-7, and claudin-18, where levels of expression varied with culture conditions. DCI-treated differentiated HFL cells cultured on permeable supports formed tight transepithelial barriers, with transepithelial resistance (TER) >1,700 ohm/cm2. In contrast, HFL cells cultured in control medium without DCI did not form tight barriers (TER <250 ohm/cm2). Consistent with this difference in barrier function, claudins expressed by HFL cells cultured in DCI medium were tightly localized to the plasma membrane; however, claudins expressed by HFL cells cultured in control medium accumulated in an intracellular compartment and showed discontinuities in claudin plasma membrane localization. In contrast to claudins, localization of other tight junction proteins, zonula occludens (ZO)-1, ZO-2, and occludin, was not sensitive to HFL cell phenotype. Intracellular claudins expressed by undifferentiated HFL cells were localized to a compartment containing early endosome antigen-1, and treatment of HFL cells with the endocytosis inhibitor monodansylcadaverine increased barrier function. This suggests that during differentiation to a type II cell phenotype, fetal alveolar epithelial cells use differential claudin expression and localization to the plasma membrane to help regulate tight junction permeability.


2003 ◽  
Vol 285 (3) ◽  
pp. L762-L772 ◽  
Author(s):  
Jianxun Lei ◽  
Sogol Nowbar ◽  
Cary N. Mariash ◽  
David H. Ingbar

Na-K-ATPase protein is critical for maintaining cellular ion gradients and volume and for transepithelial ion transport in kidney and lung. Thyroid hormone, 3,3′,5-triiodo-l-thyronine (T3), given for 2 days to adult rats, increases alveolar fluid resorption by 65%, but the mechanism is undefined. We tested the hypothesis that T3 stimulates Na-K-ATPase in adult rat alveolar epithelial cells (AEC), including primary rat alveolar type II (ATII) cells, and determined mechanisms of the T3 effect on the Na-KATPase enzyme using two adult rat AEC cell lines (MP48 and RLE-6TN). T3 at 10-8 and 10-5 M increased significantly hydrolytic activity of Na-K-ATPase in primary ATII cells and both AEC cell lines. The increased activity was dose dependent in the cell lines (10-9-10-4 M) and was detected within 30 min and peaked at 6 h. Maximal increases in Na-K-ATPase activity were twofold in MP48 and RLE-6TN cells at pharmacological T3 of 10-5 and 10-4 M, respectively, but increases were statistically significant at physiological T3 as low as 10-9 M. This effect was T3 specific, because reverse T3 (3,3′,5′-triiodo-l-thyronine) at 10-9-10-4 M had no effect. The T3-induced increase in Na-K-ATPase hydrolytic activity was not blocked by actinomycin D. No significant change in mRNA and total cell protein levels of Na-K-ATPase were detected with 10-9-10-5 M T3 at 6 h. However, T3 increased cell surface expression of Na-K-ATPase α1- or β1-subunit proteins by 1.7- and 2-fold, respectively, and increases in Na-K-ATPase activity and cell surface expression were abolished by brefeldin A. These data indicate that T3 specifically stimulates Na-K-ATPase activity in adult rat AEC. The upregulation involves translocation of Na-K-ATPase to plasma membrane, not increased gene transcription. These results suggest a novel nontranscriptional mechanism for regulation of Na-K-ATPase by thyroid hormone.


Sign in / Sign up

Export Citation Format

Share Document