Extracellular ATP regulation of feline tracheal submucosal gland secretion

1994 ◽  
Vol 267 (2) ◽  
pp. L159-L164 ◽  
Author(s):  
S. Shimura ◽  
T. Sasaki ◽  
M. Nagaki ◽  
T. Takishima ◽  
K. Shirato

The standard patch-clamp technique was employed on enzymatically digested acinar cells of submucosal glands isolated from feline trachea. ATP (-10(-3) M) evoked bidirectional current responses and an initial inward current at -80 mV (Cl- current) was followed by an outward current at 0 mV of membrane potential (K+ current). Isoproterenol (ISO) alone did not evoke any significant current responses. However, ISO augmented the ATP-induced inward and outward currents. A phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, mimicked the augmentation by ISO. [Ca2+]i of acinar cells in isolated gland was measured using a fluorescent dye, fura 2. ATP (-10(-3) M) induced an immediate increase in [Ca2+]i followed by a prolonged plateau, and Ca2+ removal resulted in an initial increase alone without the prolonged phase. ISO also augmented the ATP-evoked increases in [Ca2+]i mainly in the plateau phases. Mucus glycoprotein (MGP) secretion was estimated by measuring trichloroacetic acid-precipitable [3H]glycoconjugates from isolated glands. ATP (-10(-3) M) evoked significant MGP secretion and ISO enhanced the ATP-induced MGP secretion. In contrast, adenosine (-10(-3) M) produced no significant responses in current, MGP secretion, or [Ca2+]i. These findings suggest that 1) P2-receptor stimulation and the resultant [Ca2+]i rise induced both electrolyte and MGP secretions and 2) ATP-induced secretion is enhanced by an adenosine 3',5'-cyclic monophosphate intracellular concentration [cAMP]i-rise after beta-receptor stimulation in airway submucosal glands.

1998 ◽  
Vol 275 (1) ◽  
pp. L145-L154 ◽  
Author(s):  
C. Vandier ◽  
M. Delpech ◽  
P. Bonnet

Single smooth muscle cells of rabbit intrapulmonary artery were voltage clamped using the perforated-patch configuration of the patch-clamp technique. We observed spontaneous transient outward currents (STOCs) and a steady-state outward current. Because STOCs were tetraethylammonium sensitive and activated by Ca2+ influx, they were believed to represent activation of Ca2+-activated K+ channels. The steady-state outward current, which was sensitive to 4-aminopyridine, was the delayed rectifier K+ current. In cells voltage clamped at 0 mV, we found that STOCs were not randomly distributed in amplitude but were composed of multiples of 1.57 ± 0.56 pA/pF. The mean frequency of STOCs was 5.51 ± 3.49 Hz. Ryanodine (10 μM), caffeine (5 mM), thapsigargin (200 nM), and hypoxia [Formula: see text] = 10 mmHg) decreased STOCs. The effect of hypoxia on STOCs was partially reversible only if the experiment was conducted in the presence of thapsigargin. Hypoxia and thapsigargin decrease steady-state outward current. Thapsigargin and removal of external Ca2+abolished the effect of hypoxia, suggesting that hypoxia decreases steady-state outward current by a Ca2+-dependent mechanism.


1996 ◽  
Vol 270 (6) ◽  
pp. G932-G938 ◽  
Author(s):  
J. Jury ◽  
K. R. Boev ◽  
E. E. Daniel

Single smooth muscle cells from the opossum body circular muscle were isolated and whole cell currents were characterized by the whole cell patch-clamp technique. When the cells were held at -50 mV and depolarized to 70 mV in 20-mV increments, initial small inactivating inward currents were evoked (-30 to 30 mV) followed by larger sustained outward currents. Depolarization from a holding potential of -90 mV evoked an initial fast inactivating outward current sensitive to 4-aminopyridine but not to high levels of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). The outward currents reversed near K+ equilibrium potential and were abolished when KCl was replaced by CsCl in the pipette solution. The sustained outward current was inhibited by quinine and cesium. High EGTA in the pipette solution reduced but did not abolish the sustained outward currents, suggesting that both Ca(2+)-dependent and -independent currents were evoked. The nitric oxide (NO)-releasing agents Sin-1 and sodium nitroprusside increased outward K+ currents. High levels of EGTA in the pipette solution abolished the increase in outward current induced by Sin-1. The presence of cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum (SR) Ca2+ pump, blocked the effects of NO-releasing agents. We conclude that NO release activates K+ outward currents in opossum esophagus circular muscle, which may depend on Ca2+ release from the SR stores.


1980 ◽  
Vol 88 (1) ◽  
pp. 293-304 ◽  
Author(s):  
YOUKO SATOW ◽  
CHING KUNG

Late K-outward currents upon membrane depolarization were recorded in Paramecium tetraurelia under a voltage clamp. A Ca-induced K-outward component is demonstrated by subtracting the value of the outward current in a pawn A mutant lacking functional Ca-channels (pwA500). The Ca-induced K-outward current activates slowly, reaching a peak after 100 to 1000 ms. The current then remains steady or reaches the steady state after a decline of several seconds. EGTA2- injection experiments show that the Ca-induced K-outward current is dependent on the internal Ca2+ concentration. The current is shown to depend on the voltage-dependent Ca conductance, by study of the leaky pawn A mutant (pwA132), which has a lowered Ca conductance as well as a lowered Ca-induced K-current. The Ca-induced GK is thus indirectly dependent on the voltage. The maximal GK is about 40 nmho/cell at + 7 mV in 4 mM-K+. The Ca-induced K current is sustained throughout the prolonged depolarization and the prolonged ciliary reversal.


1997 ◽  
Vol 273 (6) ◽  
pp. C2010-C2021 ◽  
Author(s):  
S. D. Koh ◽  
G. M. Dick ◽  
K. M. Sanders

The patch-clamp technique was used to determine the ionic conductances activated by ATP in murine colonic smooth muscle cells. Extracellular ATP, UTP, and 2-methylthioadenosine 5′-triphosphate (2-MeS-ATP) increased outward currents in cells with amphotericin B-perforated patches. ATP (0.5–1 mM) did not affect whole cell currents of cells dialyzed with solutions containing ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid. Apamin (3 × 10−7M) reduced the outward current activated by ATP by 32 ± 5%. Single channel recordings from cell-attached patches showed that ATP, UTP, and 2-MeS-ATP increased the open probability of small-conductance, Ca2+-dependent K+ channels with a slope conductance of 5.3 ± 0.02 pS. Caffeine (500 μM) enhanced the open probability of the small-conductance K+ channels, and ATP had no effect after caffeine. Pyridoxal phosphate 6-azophenyl-2′,4′-disulfonic acid tetrasodium (PPADS, 10−4 M), a nonselective P2 receptor antagonist, prevented the increase in open probability caused by ATP and 2-MeS-ATP. PPADS had no effect on the response to caffeine. ATP-induced hyperpolarization in the murine colon may be mediated by P2y-induced release of Ca2+ from intracellular stores and activation of the 5.3-pS Ca2+-activated K+ channels.


2020 ◽  
Vol 21 (14) ◽  
pp. 4876
Author(s):  
Zbigniew Burdach ◽  
Agnieszka Siemieniuk ◽  
Waldemar Karcz

In contrast to the well-studied effect of auxin on the plasma membrane K+ channel activity, little is known about the role of this hormone in regulating the vacuolar K+ channels. Here, the patch-clamp technique was used to investigate the effect of auxin (IAA) on the fast-activating vacuolar (FV) channels. It was found that the macroscopic currents displayed instantaneous currents, which at the positive potentials were about three-fold greater compared to the one at the negative potentials. When auxin was added to the bath solution at a final concentration of 1 µM, it increased the outward currents by about 60%, but did not change the inward currents. The imposition of a ten-fold vacuole-to-cytosol KCl gradient stimulated the efflux of K+ from the vacuole into the cytosol and reduced the K+ current in the opposite direction. The addition of IAA to the bath solution with the 10/100 KCl gradient decreased the outward current and increased the inward current. Luminal auxin reduced both the outward and inward current by approximately 25% compared to the control. The single channel recordings demonstrated that cytosolic auxin changed the open probability of the FV channels at the positive voltages to a moderate extent, while it significantly increased the amplitudes of the single channel outward currents and the number of open channels. At the positive voltages, auxin did not change the unitary conductance of the single channels. We suggest that auxin regulates the activity of the fast-activating vacuolar (FV) channels, thereby causing changes of the K+ fluxes across the vacuolar membrane. This mechanism might serve to tightly adjust the volume of the vacuole during plant cell expansion.


1990 ◽  
Vol 63 (4) ◽  
pp. 725-737 ◽  
Author(s):  
S. K. Florio ◽  
C. D. Westbrook ◽  
M. R. Vasko ◽  
R. J. Bauer ◽  
J. L. Kenyon

1. We used the patch-clamp technique to study voltage-activated transient potassium currents in freshly dispersed and cultured chick dorsal root ganglion (DRG) cells. Whole-cell and cell-attached patch currents were recorded under conditions appropriate for recording potassium currents. 2. In whole-cell experiments, 100-ms depolarizations from normal resting potentials (-50 to -70 mV) elicited sustained outward currents that inactivated over a time scale of seconds. We attribute this behavior to a component of delayed rectifier current. After conditioning hyperpolarizations to potentials negative to -80 mV, depolarizations elicited transient outward current components that inactivated with time constants in the range of 8-26 ms. We attribute this behavior to a transient outward current component. 3. Conditioning hyperpolarizations increased the rate of activation of the net outward current implying that the removal of inactivation of the transient outward current allows it to contribute to early outward current during depolarizations from negative potentials. 4. Transient current was more prominent on the day the cells were dispersed and decreased with time in culture. 5. In cell-attached patches, single channels mediating outward currents were observed that were inactive at resting potentials but were active transiently during depolarizations to potentials positive to -30 mV. The probability of channels being open increased rapidly (peaking within approximately 6 ms) and then declined with a time constant in the range of 13-30 ms. With sodium as the main extracellular cation, single-channel conductances ranged from 18 to 32 pS. With potassium as the main extracellular cation, the single-channel conductance was approximately 43 pS, and the channel current reversed near 0 mV, as expected for a potassium current. 6. We conclude that the transient potassium channels mediate the component of transient outward current seen in the whole-cell experiments. This current is a relatively small component of the net current during depolarizations from normal resting potentials, but it can contribute significant outward current early in depolarizations from hyperpolarized potentials.


1996 ◽  
Vol 271 (4) ◽  
pp. C1233-C1243 ◽  
Author(s):  
Y. Song ◽  
L. Belardinelli

The goal of this study was to determine the electrophysiological and functional effects of adenosine on ventricular myocytes of guinea pig, rabbit, rat, and ferret hearts. Adenosine (100 microM) shortened the action potential durations of rat and ferret myocytes by 14 +/- 1 and 57 +/- 7%, reduced the amplitudes of cell twitch shortening by 13 +/- 1 and 54 +/- 5%, and increased outward currents by 15 +/- 4 and 55 +/- 5%, respectively, but had no effect on guinea pig and rabbit myocytes. The properties of adenosine-activated outward current in rat and ferret ventricular myocytes indicated that this current is the adenosine-sensitive K+ current [IK(Ado)]. Adenosine had no significant effect on basal Ca2+ current but specifically inhibited isoproterenol-stimulated L-type Ca2+ current in myocytes of all species studied. Binding studies revealed that the density of A1 adenosine receptors (A1AdoR) was highest in ferret and lowest in rabbit myocytes, but the differential effects of adenosine among species could not be solely explained by differences in A1AdoR density. In summary, adenosine shortened the action potential and reduced the twitch shortening of rat and ferret but not of guinea pig and rabbit ventricular myocytes. Shortening of the action potential was associated with the activation of IK(Ado). The anti-beta-adrenergic action of adenosine appeared to be independent of species.


1995 ◽  
Vol 74 (4) ◽  
pp. 1485-1497 ◽  
Author(s):  
J. Schmidt ◽  
S. Gramoll ◽  
R. L. Calabrese

1. The effects of Phe-Met-Arg-Phe (FMRF)amide (10(-6) M) on membrane properties of heart interneurons in the third, fourth, and fifth segmental ganglia [HN(3), HN(4), and HN(5) cells, respectively] of the leech were studied using discontinuous current-clamp and single-electrode voltage-clamp techniques. FMRFamide was focally applied onto the soma of the cell under investigation. 2. Application of FMRFamide depolarized HN(3) and HN(4) cells by evoking an inward current. These responses were subject to pronounced desensitization. The inward currents evoked by application of FMRFamide were associated with an increase in membrane conductance and appeared to be voltage dependent. Currents were enhanced at more depolarized potentials. 3. The responsiveness of the HN(3) and HN(4) cells was not affected when the Ca2+ concentration in the bath saline was reduced from normal (1.8 mM) to 0.1 mM. The depolarizing response on application of FMRFamide was blocked when Co2+ was substituted for Ca2+. 4. HN(3) and HN(4) cells did not respond to FMRFamide application in Na(+)-free solution. Inward currents were largely reduced when bath saline with 30% of the normal Na+ concentration was used. When Li+ was substituted for Na+ in the saline, application of FMRFamide still evoked depolarizing responses in HN(3) and HN(4) cells. 5. We conclude that focal application of FMRFamide onto the somata of HN(3) and HN(4) cells evokes a voltage-dependent inward current, carried largely by Na+. 6. Focal application of FMRFamide onto somata of HN(5) cells hyperpolarized these cells by activating a voltage-dependent outward current. 7. HN(5) cells were loaded with Cl- until inhibitory postsynaptic potentials carried by Cl- reversed. Cl(-)-loaded cells still responded with a hyperpolarization when FMRFamide was applied onto their somata. Therefore the outward current evoked by FMRFamide appears to be mediated by a K+ conductance increase. 8. Application of FMRFamide onto the somata of HN(5) cells enhanced outward currents that were evoked by depolarizing voltage steps from a holding potential of -45 mV. 9. We conclude that the hyperpolarizing response of HN(5) cells to focal application of FMRFamide onto their somata is the result of an up-regulation of a voltage-dependent K+ current.


1982 ◽  
Vol 79 (2) ◽  
pp. 187-209 ◽  
Author(s):  
J E Lisman ◽  
G L Fain ◽  
P M O'Day

The voltage-dependent conductances of Limulus ventral photoreceptors have been investigated using a voltage-clamp technique. Depolarization in the dark induces inward and outward currents. The inward current is reduced by removing Na+ or Ca2+ and is abolished by removing both ions. These results suggest that both Na+ and Ca2+ carry voltage-dependent inward current. Inward current is insensitive to tetrodotoxin but is blocked by external Ni2+. The outward current has a large transient component that is followed by a smaller maintained component. Intracellular tetraethylammonium preferentially reduces the maintained component, and extracellular 4-amino pyridine preferentially reduces the transient component. Neither component is strongly affected by removal of extracellular Ca2+ or by intracellular injection of EGTA. It is concluded that the photoreceptors contain at least three separate voltage-dependent conductances: 1) a conductance giving rise to inward currents; 2) a delayed rectifier giving rise to maintained outward K+ current; and 3) a rapidly inactivating K+ conductance similar to the A current of molluscan neurons.


1989 ◽  
Vol 257 (3) ◽  
pp. C461-C469 ◽  
Author(s):  
W. C. Cole ◽  
K. M. Sanders

Outward currents of colonic smooth muscle cells were characterized by the whole cell voltage-clamp method. Four components of outward current were identified: a time-independent and three time-dependent components. The time-dependent current showed strong outward rectification positive to -25 mV and was blocked by tetraethylammonium. The time-dependent components were separated on the basis of their time courses, voltage dependence, and pharmacological sensitivities. They are as follows. 1) A Ca2+-activated K current sensitive to external Ca2+ and Ca2+ influx was blocked by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (0.1 X 10(-3) M) and nifedipine (1 X 10(-6) and was increased by elevated Ca2+ (8 X 10(-6) M) and BAY K 8644 (1 X 10(-6) M). 2) A "delayed rectifier" current was observed that decayed slowly with time and showed no voltage-dependent inactivation. 3) Spontaneous transient outward currents that were blocked by ryanodine (2 X 10(-6) M) were also recorded. The possible contributions of these currents to the electrical activity of colonic muscle cells in situ are discussed. Ca2+-activated K current may contribute a significant conductance to the repolarizing phase of electrical slow waves.


Sign in / Sign up

Export Citation Format

Share Document