Superoxide released from neutrophils causes a reduction in nitric oxide gas

1998 ◽  
Vol 275 (6) ◽  
pp. L1120-L1126 ◽  
Author(s):  
Kimberly L. Jones ◽  
Ty W. Bryan ◽  
Patricia A. Jinkins ◽  
Keith L. Simpson ◽  
Matthew B. Grisham ◽  
...  

Exhaled nitric oxide (NO) is increased in some inflammatory airway disorders but not in others such as cystic fibrosis and acute respiratory distress syndrome. NO can combine with superoxide ([Formula: see text]) to form peroxynitrite, which can decompose into nitrate. Activated polymorphonuclear neutrophils (PMNs) releasing[Formula: see text] could account for a reduction in exhaled NO in disorders such as cystic fibrosis. To test this hypothesis in vitro, we stimulated confluent cultures of LA-4 cells, a murine lung epithelial cell line, to produce NO. Subsequently, human PMNs stimulated to produce [Formula: see text] were added to the LA-4 cells. A gradual increase in NO in the headspace above the cultures was observed and was markedly reduced by the addition of PMNs. An increase in nitrate in the culture supernatant fluids was measured, but no increase in nitrite was detected. Superoxide dismutase attenuated the PMN effect, and xanthine/xanthine oxidase reproduced the effect. No changes in epithelial cell inducible NO synthase protein or mRNA were observed. These data demonstrate that [Formula: see text]released from PMNs can decrease NO by conversion to nitrate and suggest a potential mechanism for modulation of NO levels in vivo.

2014 ◽  
Vol 307 (4) ◽  
pp. L326-L337 ◽  
Author(s):  
Hyung-Geun Moon ◽  
Sang-Heon Kim ◽  
Jinming Gao ◽  
Taihao Quan ◽  
Zhaoping Qin ◽  
...  

Despite extensive research, the pathogenesis of cigarette smoking (CS)-associated emphysema remains incompletely understood, thereby impeding development of novel therapeutics, diagnostics, and biomarkers. Here, we report a novel paradigm potentially involved in the development of epithelial death and tissue loss in CS-associated emphysema. After prolonged exposure of CS, CCN1 cleavage was detected both in vitro and in vivo. Full-length CCN1 (flCCN1) was secreted in an exosome-shuttled manner, and secreted plasmin converted flCCN1 to cleaved CCN1 (cCCN1) in extracellular matrix. Interestingly, exosome-shuttled flCCN1 facilitated the interleukin (IL)-8 and vascular endothelial growth factor (VEGF) release in response to cigarette smoke extract (CSE). Therefore, flCCN1 potentially promoted CS-induced inflammation via IL-8-mediated neutrophil recruitment and also maintained the lung homeostasis via VEGF secretion. Interestingly, cCCN1 abolished these functions. Furthermore, cCCN1 promoted protease and matrix metalloproteinase (MMP)-1 production after CSE. These effects were mainly mediated by the COOH-terminal fragments of CCN1 after cleavage. Both the decrease of VEGF and the elevation of MMPs favor the development of emphysema. cCCN1, therefore, likely contributes to the epithelial cell damage after CS. Additionally, CSE and cCCN1 both stimulated integrin-α7 expressions in lung epithelial cells. The integrin-α7 appeared to be the binding receptors of cCCN1 and, subsequently, mediated its cellular function by promoting MMP1. Consistent with our observation on the functional roles of cCCN1 in vitro, elevated cCCN1 level was found in the bronchoalveolar lavage fluid from mice with emphysematous changes after 6 mo CS exposure. Taken together, we hypothesize that cCCN1 promoted the epithelial cell death and tissue loss after prolonged CS exposure.


2018 ◽  
Vol 11 (4) ◽  
pp. 330-346 ◽  
Author(s):  
João Alfredo Moraes ◽  
Ana Clara Frony ◽  
Pedro Barcellos-de-Souza ◽  
Marcel Menezes da Cunha ◽  
Thayanne Brasil Barbosa Calcia ◽  
...  

Exposition of neutrophils (polymorphonuclear neutrophils, PMNs) to bacterial products triggers exacerbated activation of these cells, increasing their harmful effects on host tissues. We evaluated the possibility of interfering with the classic immune innate responses of human PMNs exposed to bacterial endotoxin (lipopolysaccharide, LPS), and further stimulated with bacterial formyl peptide (N-formyl-methionine-leucine-phenylalanine, fMLP). We showed that the low- molecular-weight fucoidan (LMW-Fuc), a polysaccharide extracted from brown algae, attenuated the exacerbated activation induced by fMLP on LPS-primed PMNs, in vitro, impairing chemotaxis, NET formation, and the pro-survival and pro-oxidative effects. LMW-Fuc also inhibited the activation of canonical signaling pathways, AKT, bad, p47phox and MLC, activated by the exposition of PMN to bacterial products. The activation of PMN by sequential exposure to LPS and fMLP induced the release of L-selectin+ microparticles, which were able to trigger extracellular reactive oxygen species production by fresh PMNs and macrophages. Furthermore, we observed that LMW-Fuc inhibited microparticle release from activated PMN. In vivo experiments showed that circulating PMN-derived microparticles could be detected in mice exposed to bacterial products (LPS/fMLP), being downregulated in animals treated with LMW-Fuc. The data highlight the autocrine and paracrine role of pro-inflammatory microparticles derived from activated PMN and demonstrate the anti-inflammatory effects of LMW-Fuc on these cells.


2021 ◽  
pp. 096032712110594
Author(s):  
Xin Tang ◽  
Zhenyu Li ◽  
Zhi Yu ◽  
Jinna Li ◽  
Jinbang Zhang ◽  
...  

Cigarette smoke (CS)-caused ferroptosis was involved in the pathogenesis of COPD, but the role of ferroptosis in lung epithelial injury and inflammation is not clear. Rats were treated with CS or CUR and BEAS-2B cells were exposed to CS extract (CSE), ferrostatin-1 (Fer-1), deferoxamine (DFO), or CUR to detect reactive oxygen species (ROS) accumulation, lipid peroxidation, iron overload, and ferroptosis-related protein, which were the characteristic changes of ferroptosis. Compared with the control group, CSE-treated BEAS-2B cells had more cell death, higher cytotoxicity, and lower cell viability. The infiltration of inflammatory cell around the bronchi in the CS group of rats was more than that in the normal group. Meanwhile, CSE/CS elevated the levels of interleukin-6 and tumor necrosis factor-α in BEAS-2B cells and bronchoalveolar lavage fluid of rats. Besides, accumulative ROS and depleted glutathione was observed in vitro. In BEAS-2B cells and lung tissues of rats, CSE/CS increased malondialdehyde and iron; down-regulated solute carrier family 7, glutathione peroxidase 4, and ferritin heavy chain levels; and up-regulated transferrin receptor level. These changes were rescued by pretreatment of Fer-1 or DFO in vitro, and mitigated by CUR in vitro and in vivo. Collectively, this study reveals that ferroptosis was involved in lung epithelial cell injury and inflammation induced by CS, and CUR may alleviate CS-induced injury, inflammation, and ferroptosis of lung epithelial cell.


2019 ◽  
Vol 3 (3) ◽  
pp. 432-445 ◽  
Author(s):  
William Bain ◽  
Tolani Olonisakin ◽  
Minting Yu ◽  
Yanyan Qu ◽  
Mei Hulver ◽  
...  

Abstract Thrombocytopenia is associated with worse outcomes in patients with acute respiratory distress syndrome, which is most commonly caused by infection and marked by alveolar–capillary barrier disruption. However, the mechanisms by which platelets protect the lung alveolar–capillary barrier during infectious injury remain unclear. We found that natively thrombocytopenic Mpl−/− mice deficient in the thrombopoietin receptor sustain severe lung injury marked by alveolar barrier disruption and hemorrhagic pneumonia with early mortality following acute intrapulmonary Pseudomonas aeruginosa (PA) infection; barrier disruption was attenuated by platelet reconstitution. Although PA infection was associated with a brisk neutrophil influx, depletion of airspace neutrophils failed to substantially mitigate PA-triggered alveolar barrier disruption in Mpl−/− mice. Rather, PA cell-free supernatant was sufficient to induce lung epithelial cell apoptosis in vitro and in vivo and alveolar barrier disruption in both platelet-depleted mice and Mpl−/− mice in vivo. Cell-free supernatant from PA with genetic deletion of the type 2 secretion system, but not the type 3 secretion system, mitigated lung epithelial cell death in vitro and lung injury in Mpl−/− mice. Moreover, platelet releasates reduced poly (ADP ribose) polymerase cleavage and lung injury in Mpl−/− mice, and boiling of platelet releasates, but not apyrase treatment, abrogated PA supernatant–induced lung epithelial cell cytotoxicity in vitro. These findings indicate that while neutrophil airspace influx does not potentiate infectious lung injury in the thrombocytopenic host, platelets and their factors protect against severe pulmonary complications from pathogen-secreted virulence factors that promote host cell death even in the absence of overt infection.


Sign in / Sign up

Export Citation Format

Share Document