Expression and regulation of vascular endothelial growth factor in human pulmonary epithelial cells

2000 ◽  
Vol 279 (2) ◽  
pp. L371-L378 ◽  
Author(s):  
Sandrine Boussat ◽  
Saadia Eddahibi ◽  
André Coste ◽  
Virginie Fataccioli ◽  
Mallaury Gouge ◽  
...  

Vascular endothelial growth factor (VEGF) is a potent endothelial cell growth and permeability factor highly expressed in rodent alveolar epithelium after injury and repair. To investigate VEGF synthesis in human lung epithelial cells, we examined VEGF expression by cultured cells under basal conditions and after cytokine treatment or oxidative stress. Basal VEGF expression was detected in transformed human epithelial cell lines (A549 and 1HAEo−) and in primary human bronchial epithelial cells with RT-PCR, Western blot, and immunocytochemistry. Among the cytokines tested, only transforming growth factor-β1 increased the levels of excreted VEGF165 as measured by ELISA. Under hypoxia (0% O2 for 24 h), the VEGF165 level increased fivefold, and this effect was O2 concentration dependent. VEGF concentrations in the medium of all the cell types studied reached values similar to those found in bronchoalveolar lavage fluids from normal patients. Endothelial cells (human umbilical vein endothelial cells) exposed to conditioned medium from primary bronchial epithelial cell cultures showed an increased growth rate, which was inhibited in the presence of a specific neutralizing antibody to VEGF. These results suggest that lung epithelial cells participate in the endothelial repair and angiogenesis that follow lung injury through the synthesis of VEGF.

1998 ◽  
Vol 140 (4) ◽  
pp. 947-959 ◽  
Author(s):  
Sybille Esser ◽  
Karen Wolburg ◽  
Hartwig Wolburg ◽  
Georg Breier ◽  
Teymuras Kurzchalia ◽  
...  

Abstract. Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis, angiogenesis, and vascular permeability. In contrast to its transient expression during the formation of new blood vessels, VEGF and its receptors are continuously and highly expressed in some adult tissues, such as the kidney glomerulus and choroid plexus. This suggests that VEGF produced by the epithelial cells of these tissues might be involved in the induction or maintenance of fenestrations in adjacent endothelial cells expressing the VEGF receptors. Here we describe a defined in vitro culture system where fenestrae formation was induced in adrenal cortex capillary endothelial cells by VEGF, but not by fibroblast growth factor. A strong induction of endothelial fenestrations was observed in cocultures of endothelial cells with choroid plexus epithelial cells, or mammary epithelial cells stably transfected with cDNAs for VEGF 120 or 164, but not with untransfected cells. These results demonstrate that, in these cocultures, VEGF is sufficient to induce fenestrations in vitro. Identical results were achieved when the epithelial cells were replaced by an epithelial-derived basal lamina-type extracellular matrix, but not with collagen alone. In this defined system, VEGF-mediated induction of fenestrae was always accompanied by an increase in the number of fused diaphragmed caveolae-like vesicles. Caveolae, but not fenestrae, were labeled with a caveolin-1–specific antibody both in vivo and in vitro. VEGF stimulation led to VEGF receptor tyrosine phosphorylation, but no change in the distribution, phosphorylation, or protein level of caveolin-1 was observed. We conclude that VEGF in the presence of a basal lamina-type extracellular matrix specifically induces fenestrations in endothelial cells. This defined in vitro system will allow further study of the signaling mechanisms involved in fenestrae formation, modification of caveolae, and vascular permeability.


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3801-3808 ◽  
Author(s):  
Michael Melter ◽  
Marlies E. J. Reinders ◽  
Masayuki Sho ◽  
Soumitro Pal ◽  
Christopher Geehan ◽  
...  

This study addresses a mechanism by which lymphocytes may promote vascular endothelial growth factor (VEGF) expression and angiogenesis in immune inflammation. Resting human umbilical endothelial cells (HUVECs) were found to express low levels of VEGF messenger RNA (mRNA) by reverse transcription polymerase chain reaction and ribonuclease protection assay with little or no change in expression following activation by cytokines, including tumor necrosis factor-α, interleukin (IL)–1, interferon γ, or IL-4. In contrast, treatment of HUVECs and monocytes with soluble CD40 ligand (sCD40L) resulted in a marked dose-dependent induction of VEGF mRNA (approximately 4-fold), which peaked between 1 and 5 hours post-stimulation. Transient transfection of HUVECs was performed with a luciferase reporter construct under the control of the human VEGF promoter. Treatment of transfected HUVECs with sCD40L was found to enhance luciferase activity (approximately 4-fold) compared with controls, similar to the relative fold induction in mRNA expression in parallel cultures. Thus, CD40-dependent VEGF expression was a result of transcriptional control mechanisms. Treatment of HUVECs with sCD40L was also found to function in vitro to promote growth and proliferation in a VEGF-dependent manner, and CD40-dependent HUVEC growth was comparable to that found following treatment with recombinant human VEGF. Furthermore, subcutaneous injection of sCD40L in severe combined immunodeficient and nude mice induced VEGF expression and marked angiogenesis in vivo. Taken together, these findings are consistent with a function for CD40L-CD40 interactions in VEGF-induced angiogenesis and define a mechanistic link between the immune response and angiogenesis.


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3801-3808 ◽  
Author(s):  
Michael Melter ◽  
Marlies E. J. Reinders ◽  
Masayuki Sho ◽  
Soumitro Pal ◽  
Christopher Geehan ◽  
...  

Abstract This study addresses a mechanism by which lymphocytes may promote vascular endothelial growth factor (VEGF) expression and angiogenesis in immune inflammation. Resting human umbilical endothelial cells (HUVECs) were found to express low levels of VEGF messenger RNA (mRNA) by reverse transcription polymerase chain reaction and ribonuclease protection assay with little or no change in expression following activation by cytokines, including tumor necrosis factor-α, interleukin (IL)–1, interferon γ, or IL-4. In contrast, treatment of HUVECs and monocytes with soluble CD40 ligand (sCD40L) resulted in a marked dose-dependent induction of VEGF mRNA (approximately 4-fold), which peaked between 1 and 5 hours post-stimulation. Transient transfection of HUVECs was performed with a luciferase reporter construct under the control of the human VEGF promoter. Treatment of transfected HUVECs with sCD40L was found to enhance luciferase activity (approximately 4-fold) compared with controls, similar to the relative fold induction in mRNA expression in parallel cultures. Thus, CD40-dependent VEGF expression was a result of transcriptional control mechanisms. Treatment of HUVECs with sCD40L was also found to function in vitro to promote growth and proliferation in a VEGF-dependent manner, and CD40-dependent HUVEC growth was comparable to that found following treatment with recombinant human VEGF. Furthermore, subcutaneous injection of sCD40L in severe combined immunodeficient and nude mice induced VEGF expression and marked angiogenesis in vivo. Taken together, these findings are consistent with a function for CD40L-CD40 interactions in VEGF-induced angiogenesis and define a mechanistic link between the immune response and angiogenesis.


2001 ◽  
Vol 85 (01) ◽  
pp. 171-176 ◽  
Author(s):  
Hiroyuki Itaya ◽  
Hidemi Yoshida ◽  
Masayuki Koyama ◽  
Sohei Suzuki ◽  
Kei Satoh ◽  
...  

SummaryVascular endothelial growth factor (VEGF) is a mitogen for endothelial cells. We have studied the production of VEGF by human macrophages in response to lipopolysaccharide (LPS). Macrophages stimulated with LPS expressed VEGF mRNA and protein in concentration- and time-dependent manners. The LPS-induced expression of VEGF was inhibited by cycloheximide pretreatment, which suggested that synthesis of certain factor(s) is required for the LPS activity. The induction of VEGF was also suppressed by SB203580, an inhibitor of p38 mitogen-activated protein (MAP) kinase. These results suggest that the LPS-induced VEGF expression depends on the p38-mediated expression of c-Jun, which constitutes the AP-1 complex and binds to the AP-1 site in the VEGF promoter. Pretreatment of the cells with dexamethasone did not affect the LPS-induced upregulation of VEGF mRNA but strongly inhibited VEGF protein production, and the involvement of posttranscriptional regulation on VEGF expression by dexamethasone was suggested. The conditioned medium of LPS-stimulated macrophages enhanced the growth of cultured endothelial cells and it was inhibited by an antibody against VEGF. We conclude that macrophages produce VEGF in response to the stimulation with LPS, which may be partly mediated by the p38 MAP kinase pathway.


2016 ◽  
Vol 10 (1) ◽  
pp. 752-759 ◽  
Author(s):  
Donia Sadri ◽  
Sareh Farhadi ◽  
Zahra Shahabi ◽  
Samaneh Sarshar

Background: The recent scientific reports have shown that angiogenesis can affect biological behavior of pathologic lesions. Objective: Regarding unique clinical outcome of Odontogenic keratocyst (OKC), the present study was aimed to compare angiogenesis in Odontogenic keratocyst and Dentigerous cyst (DC). Method: In this experimental study, tissue sections of 46 samples of OKC and DC were stained through immunohistochemical method using Vascular Endothelial Growth Factor (VEGF) antibody. VEGF expression was evaluated in epithelial cells, fibroblasts and endothelial cells. The average percentage of stained cells in any samples was categorized to 3 groups as follows: SCORE 0: 10% of cells or less are positive. SCORE 1: 10 to 50% of cells are positive. SCORE 2: more than 50% of cells are positive. Mann-U-Whitney, T-test and chi-square was used for statistical analysis. Result: The average of VEGF expression in 24 samples of DC was 20.2% and in 22 samples of OKC was 52.6%, respectively. The average of VEGF expression in these two cysts had statistical significant differences. (PV= 0.045). There was significant statistical differences between two cysts in the terms of VEGF SCORE (PV= 0.000). OKC samples had significantly higher SCORE for the purpose of VEGF incidence than DC. Also, there were no differences between VEGF expression in epithelial cells of two cysts (PV= 0.268) there were significant statistical differences between two cysts in terms of endothelial cell staining. The endothelial cell staining was significantly higher in OKC than DC (PV= 0.037%). Conclusion: Regarding higher expression of Vascular Endothelial Growth factor in OKC than DC, it seems that angiogenesis may have great impression on clinical outcome of OKC.


Sign in / Sign up

Export Citation Format

Share Document