Role of diminished epithelial GM-CSF in the pathogenesis of bleomycin-induced pulmonary fibrosis

2000 ◽  
Vol 279 (3) ◽  
pp. L487-L495 ◽  
Author(s):  
Paul J. Christensen ◽  
Marc B. Bailie ◽  
Richard E. Goodman ◽  
Aidan D. O'Brien ◽  
Galen B. Toews ◽  
...  

Evidence derived from human and animal studies strongly supports the notion that dysfunctional alveolar epithelial cells (AECs) play a central role in determining the progression of inflammatory injury to pulmonary fibrosis. We formed the hypothesis that impaired production of the regulatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) by injured AECs plays a role in the development of pulmonary fibrosis. To test this hypothesis, we used the well-characterized model of bleomycin-induced pulmonary fibrosis in rats. GM-CSF mRNA is expressed at a constant high level in the lungs of untreated or saline-challenged animals. In contrast, there is a consistent reduction in expression of GM-CSF mRNA in the lung during the first week after bleomycin injury. Bleomycin-treated rats given neutralizing rabbit anti-rat GM-CSF IgG develop increased fibrosis. Type II AECs isolated from rats after bleomycin injury demonstrate diminished expression of GM-CSF mRNA immediately after isolation and in response to stimulation in vitro with endotoxin compared with that in normal type II cells. These data demonstrate a defect in the ability of type II epithelial cells from bleomycin-treated rats to express GM-CSF mRNA and a protective role for GM-CSF in the pathogenesis of bleomycin-induced pulmonary fibrosis.

2004 ◽  
Vol 287 (1) ◽  
pp. L104-L110 ◽  
Author(s):  
Xiaohui Fang ◽  
Yuanlin Song ◽  
Rachel Zemans ◽  
Jan Hirsch ◽  
Michael A. Matthay

Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid transport in cultured rat alveolar type II cells using an air-liquid interface. The cells were seeded on 0.4-μm microporous inserts in a Transwell system. At 96 h, the transmembrane electrical resistance reached a peak level (1,530 ± 115 Ω·cm2) with morphological evidence of tight junctions. We measured net fluid transport by placing 150 μl of culture medium containing 0.5 μCi of 131I-albumin on the apical side of the polarized cells. Protein permeability across the cell monolayer, as measured by labeled albumin, was 1.17 ± 0.34% over 24 h. The change in concentration of 131I-albumin in the apical fluid was used to determine the net fluid transported across the monolayer over 12 and 24 h. The net basal fluid transport was 0.84 μl·cm−2·h−1. cAMP stimulation with forskolin and IBMX increased fluid transport by 96%. Amiloride inhibited both the basal and stimulated fluid transport. Ouabain inhibited basal fluid transport by 93%. The cultured cells retained alveolar type II-like features based on morphologic studies, including ultrastructural imaging. In conclusion, this novel in vitro system can be used to measure net vectorial fluid transport across cultured, polarized alveolar epithelial cells.


1995 ◽  
Vol 269 (1) ◽  
pp. L127-L135 ◽  
Author(s):  
W. W. Barton ◽  
S. Wilcoxen ◽  
P. J. Christensen ◽  
R. Paine

Intercellular adhesion molecule-1 (ICAM-1) is expressed at high levels on type I alveolar epithelial cells in the normal lung and is induced in vitro as type II cells spread in primary culture. In contrast, in most nonhematopoetic cells ICAM-1 expression is induced in response to inflammatory cytokines. We have formed the hypothesis that the signals that control ICAM-1 expression in alveolar epithelial cells are fundamentally different from those controlling expression in most other cells. To test this hypothesis, we have investigated the influence of inflammatory cytokines on ICAM-1 expression in isolated type II cells that have spread in culture and compared this response to that of rat pulmonary artery endothelial cells (RPAEC). ICAM-1 protein, determined both by a cell-based enzyme-linked immunosorbent assay and by Western blot analysis, and mRNA were minimally expressed in unstimulated RPAEC but were significantly induced in a time- and dose-dependent manner by treatment with tumor necrosis factor-alpha, interleukin-1 beta, or interferon-gamma. In contrast, these cytokines did not influence the constitutive high level ICAM-1 protein expression in alveolar epithelial cells and only minimally affected steady-state mRNA levels. ICAM-1 mRNA half-life, measured in the presence of actinomycin D, was relatively long at 7 h in alveolar epithelial cells and 4 h in RPAEC. The striking lack of response of ICAM-1 expression by alveolar epithelial cells to inflammatory cytokines is in contrast to virtually all other epithelial cells studied to date and supports the hypothesis that ICAM-1 expression by these cells is a function of cellular differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 266 (2) ◽  
pp. L148-L155 ◽  
Author(s):  
H. Blau ◽  
S. Riklis ◽  
V. Kravtsov ◽  
M. Kalina

Cultured alveolar type II cells and pulmonary epithelial (PE) cells in long-term culture were found to secrete colony-stimulating factors (CSF) into the medium in similar fashion to alveolar macrophages. CSF activity was determined by using the in vitro assay for myeloid progenitor cells [colony-forming units in culture (CFU-C)]. Both lipopolisaccharide (LPS) and interleukin-1 alpha (IL-1 alpha) were found to upregulate the secretion 6.5- to 8-fold from alveolar type II cells and macrophages. However, no stimulatory effect of these factors was observed in PE cells that release CSF into the medium constitutively, possibly due to the conditions of long-term culture. The CSF activity was partially neutralized (70% inhibition) by antibodies against murine granulocyte/macrophage (GM)-CSF and IL-3, thus indicating the presence of both GM-CSF and IL-3-like factors in the CSF. However, the presence of other cytokines in the CSF is highly probable. Surfactant-associated protein A (SP-A), which is known to play a central role in surfactant homeostasis and function, was also found to upregulate secretion of CSF (at concentrations of 0.1-5 micrograms/ml) from alveolar type II cells and macrophages. Control cells such as rat peritoneal macrophages, alveolar fibroblasts, and 3T3/NIH cell line could not be elicited by SP-A to release CSF. The results are discussed in relation to the possible participation of the alveolar epithelial cells in various intercellular signaling networks. Our studies suggest that alveolar type II cells and SP-A may play an important regulatory role in the modulation of immune and inflammatory effector cells within the alveolar space.


Author(s):  
K. Udari Eshani Perera ◽  
Sasika Nimanthi Vithana Dewage ◽  
Habtamu B. Derseh ◽  
Paul John Benham ◽  
Andrew Stent ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0158367 ◽  
Author(s):  
Supparerk Disayabutr ◽  
Eun Kyung Kim ◽  
Seung-Ick Cha ◽  
Gary Green ◽  
Ram P. Naikawadi ◽  
...  

1991 ◽  
Vol 260 (4) ◽  
pp. L318-L325 ◽  
Author(s):  
R. H. Simon ◽  
J. A. Edwards ◽  
M. M. Reza ◽  
R. G. Kunkel

In a variety of inflammatory lung diseases, type I alveolar epithelial cells are more likely to be injured than are type II cells. Because oxidants have been implicated as a cause of injury in various inflammatory lung diseases, we evaluated the effects of differentiation on alveolar epithelial cell susceptibility to H2O2-induced injury. With the use of isolated rat type II cells in culture, we found that the cytotoxic effect of H2O2 increased between days 2 and 7, when type II cells are known to lose their distinctive type II properties and assume a more type I-like appearance. We previously reported that type II cells utilized both intracellular catalase and glutathione-dependent reactions to protect against H2O2. We therefore examined whether alterations in either of these protective mechanisms were responsible for the differentiation-dependent changes in sensitivity to H2O2. We found that catalase activity within alveolar epithelial cells decreased between 2 and 7 days in culture, whereas no changes were detected in glutathione-dependent systems. We then used a histochemical technique that detects catalase activity and found that type II cells within rat lungs possessed numerous catalase-containing peroxisomes, whereas very few were detected in type I cells. These findings demonstrate that as type II cells assume a type I-like phenotype, they become more susceptible to H2O2-induced injury. This increased susceptibility is associated with reductions in intracellular catalase activity, both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document