Lack of amiloride-sensitive transport across alveolar and respiratory epithelium of iNOS(−/−) mice in vivo

2001 ◽  
Vol 281 (3) ◽  
pp. L722-L731 ◽  
Author(s):  
Karin M. Hardiman ◽  
J. Russell Lindsey ◽  
Sadis Matalon

The extent to which endogenously generated nitric oxide alters Na+transport across the mammalian alveolar epithelium in vivo has not been documented. Herein we measured alveolar fluid clearance and nasal potential differences in mice lacking the inducible form of nitric oxide synthase [iNOS; iNOS(−/−)] and their corresponding wild-type controls [iNOS(+/+)]. Alveolar fluid clearance values in iNOS(+/+) and iNOS(−/−) anesthetized mice with normal oxygenation and acid-base balance were ∼30% of instilled fluid/30 min. In both groups of mice, fluid absorption was dependent on vectorial Na+movement. Amiloride (1.5 mM) decreased alveolar fluid clearance in iNOS(+/+) mice by 61%, whereas forskolin (50 μM) increased alveolar fluid clearance by 55% by stimulating amiloride-insensitive pathways. Neither agent altered alveolar fluid clearance in iNOS(−/−) mice. Hyperoxia upregulated iNOS expression in iNOS(+/+) mice and decreased their amiloride-sensitive component of alveolar fluid clearance but had no effect on the corresponding values in iNOS(−/−) mice. Nasal potential difference measurements were consistent with alveolar fluid clearance in that both groups of mice had similar baseline values, which were amiloride sensitive in the iNOS(+/+) but not in the iNOS(−/−) mice. These data suggest that nitric oxide produced by iNOS under basal conditions plays an important role in regulating amiloride-sensitive Na+channels in alveolar and airway epithelia.

1999 ◽  
Vol 277 (3) ◽  
pp. F377-F382 ◽  
Author(s):  
Jeffrey L. Garvin ◽  
Nancy J. Hong

Nitric oxide (NO) inhibits transport in various nephron segments, and the thick ascending limb (TAL) expresses nitric oxide synthase (NOS). However, the effects of NO on TAL transport have not been extensively studied. We tested the hypothesis that NO inhibits apical and basolateral Na+/H+exchange by the TAL by measuring intracellular pH (pHi) of isolated, perfused rat TALs using the fluorescent dye 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). The NO donor spermine NONOate (SPM, 10 μM) decreased steady-state pHi in medullary TALs from 7.18 ± 0.13 to 7.13 ± 0.14 ( P < 0.02), whereas controls did not decrease significantly. We next measured the buffering capacity of medullary TALs and the rate at which they recovered from acid loads to investigate the mechanism whereby NO reduces steady-state pHi. SPM decreased H+ flux ( J H) from 2.41 ± 0.66 to 0.97 ± 0.19 pmol ⋅ min−1 ⋅ mm−1, 55%. To assure that the decrease in J H was due to NO, another donor, nitroglycerin (NTG; 10 μM), was used. NTG decreased J H from 1.65 ± 0.11 to 1.07 ± 0.24 pmol ⋅ min−1 ⋅ mm−1, 37%. To determine the relative contributions of the apical and basolateral Na+/H+exchangers, 5-( N, N-dimethyl)amiloride (DMA; 100 μM) was added to either bath or lumen. With DMA added to the bath, SPM decreased J H from 4.78 ± 1.08 to 2.74 ± 0.54 pmol ⋅ min−1 ⋅ mm−1, an inhibition of 41%; and with DMA added to the lumen, SPM decreased J H from 2.31 ± 0.29 to 1.74 ± 0.27 pmol ⋅ min−1 ⋅ mm−1, a reduction of 26%. Addition of DMA alone to both bath and lumen resulted in an 87% inhibition of J H. We conclude that NO inhibits both apical and basolateral Na+/H+exchangers and consequently may play an important role in regulating pHi and may alter acid/base balance by directly affecting bicarbonate absorption in the TAL.


Kidney360 ◽  
2022 ◽  
pp. 10.34067/KID.0006762021
Author(s):  
Biff F. Palmer ◽  
Deborah J. Clegg

The role of aldosterone in regulating K+ excretion in the distal nephron is well established in kidney physiology. In addition to effects on the kidney, aldosterone modulates K+ and Na+ transport in salivary fluid, sweat, airway epithelia, and colonic fluid. More controversial and less well defined is the role of aldosterone in determining the internal distribution of K+ across cell membranes in non-transporting epithelia. In vivo studies have been limited by the difficulty in accurately measuring overall K+ balance and factoring in both variability and secondary changes in acid-base balance, systemic hemodynamics, and other K+-regulatory factors such as hormones and adrenergic activity. Despite these limitations, the aggregate data support a contributory role of aldosterone along with insulin and catecholamines in the normal physiologic regulation of internal K+ distribution. The authors speculate differences in tissue sensitivity to aldosterone may also contribute to differential tissue response of cardiac and skeletal muscle to conditions of total body K+ depletion.


2009 ◽  
Vol 297 (6) ◽  
pp. H2068-H2074 ◽  
Author(s):  
Rasmus Aamand ◽  
Thomas Dalsgaard ◽  
Frank B. Jensen ◽  
Ulf Simonsen ◽  
Andreas Roepstorff ◽  
...  

In catalyzing the reversible hydration of CO2 to bicarbonate and protons, the ubiquitous enzyme carbonic anhydrase (CA) plays a crucial role in CO2 transport, in acid-base balance, and in linking local acidosis to O2 unloading from hemoglobin. Considering the structural similarity between bicarbonate and nitrite, we hypothesized that CA uses nitrite as a substrate to produce the potent vasodilator nitric oxide (NO) to increase local blood flow to metabolically active tissues. Here we show that CA readily reacts with nitrite to generate NO, particularly at low pH, and that the NO produced in the reaction induces vasodilation in aortic rings. This reaction occurs under normoxic and hypoxic conditions and in various tissues at physiological levels of CA and nitrite. Furthermore, two specific inhibitors of the CO2 hydration, dorzolamide and acetazolamide, increase the CA-catalyzed production of vasoactive NO from nitrite. This enhancing effect may explain the known vasodilating effects of these drugs and indicates that CO2 and nitrite bind differently to the enzyme active site. Kinetic analyses show a higher reaction rate at high pH, suggesting that anionic nitrite participates more effectively in catalysis. Taken together, our results reveal a novel nitrous anhydrase enzymatic activity of CA that would function to link the in vivo main end products of energy metabolism (CO2/H+) to the generation of vasoactive NO. The CA-mediated NO production may be important to the correlation between blood flow and metabolic activity in tissues, as occurring for instance in active areas of the brain.


Circulation ◽  
1997 ◽  
Vol 96 (9) ◽  
pp. 3104-3111 ◽  
Author(s):  
Yoshihiro Fukumoto ◽  
Hiroaki Shimokawa ◽  
Toshiyuki Kozai ◽  
Toshiaki Kadokami ◽  
Kouichi Kuwata ◽  
...  

Author(s):  
Theresa Chikopela ◽  
Douglas C. Heimburger ◽  
Longa Kaluba ◽  
Pharaoh Hamambulu ◽  
Newton Simfukwe ◽  
...  

Abstract Background Endothelial function is dependent on the balance between vasoconstrictive and vasodilatory substances. The endothelium ability to produce nitric oxide is one of the most crucial mechanisms in regulating vascular tone. An increase in inducible nitric oxide synthase contributes to endothelial dysfunction in overweight persons, while oxidative stress contributes to the conversion of nitric oxide to peroxynitrite (measured as nitrotyrosine in vivo) in underweight persons. The objective of this study was to elucidate the interaction of body composition and oxidative stress on vascular function and peroxynitrite. This was done through an experimental design with three weight groups (underweight, normal weight and overweight), with four treatment arms in each. Plasma nitrotyrosine levels were measured 15–20 h post lipopolysaccharide (LPS) treatment, as were aortic ring tension changes. Acetylcholine (ACh) and sodium nitroprusside (SNP) challenges were used to observe endothelial-dependent and endothelial-independent vascular relaxation after pre-constriction of aortic rings with phenylephrine. Results Nitrotyrosine levels in saline-treated rats were similar among the weight groups. There was a significant increase in nitrotyrosine levels between saline-treated rats and those treated with the highest lipopolysaccharide doses in each of the weight groups. In response to ACh challenge, Rmax (percentage reduction in aortic tension) was lowest in overweight rats (112%). In response to SNP, there was an insignificantly lower Rmax in the underweight rats (106%) compared to the normal weight rats (112%). Overweight rats had a significant decrease in Rmax (83%) in response to SNP, signifying involvement of a more chronic process in tension reduction changes. A lower Rmax accompanied an increase in peroxynitrite after acetylcholine challenge in all weight groups. Conclusions Endothelial dysfunction, observed as an impairment in the ability to reduce tension, is associated with increased plasma peroxynitrite levels across the spectrum of body mass. In higher-BMI rats, an additional role is played by vascular smooth muscle in the causation of endothelial dysfunction.


2018 ◽  
Vol 60 (No. 8) ◽  
pp. 359-366
Author(s):  
J. Li ◽  
B. Shi ◽  
S. Yan ◽  
L. Jin ◽  
Y. Guo ◽  
...  

The effects of chitosan on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) activity and gene expression in vivo or vitro were investigated in weaned piglets. In vivo, 180 weaned piglets were assigned to five dietary treatments with six replicates. The piglets were fed on a basal diet supplemented with 0 (control), 100, 500, 1000, and 2000 mg chitosan/kg feed, respectively. In vitro, the peripheral blood mononuclear cells (PBMCs) from a weaned piglet were cultured respectively with 0 (control), 40, 80, 160, and 320 &micro;g chitosan/ml medium. Results showed that serum NO concentrations on days 14 and 28 and iNOS activity on day 28 were quadratically improved with increasing chitosan dose (P &lt; 0.05). The iNOS mRNA expressions were linearly or quadratically enhanced in the duodenum on day 28, and were improved quadratically in the jejunum on days 14 and 28 and in the ileum on day 28 (P &lt; 0.01). In vitro, the NO concentrations, iNOS activity, and mRNA expression in unstimulated PBMCs were quadratically enhanced by chitosan, but the improvement of NO concentrations and iNOS activity by chitosan were markedly inhibited by N-(3-[aminomethyl] benzyl) acetamidine (1400w) (P&nbsp;&lt; 0.05). Moreover, the increase of NO concentrations, iNOS activity, and mRNA expression in PBMCs induced by lipopolysaccharide (LPS) were suppressed significantly by chitosan (P &lt; 0.05). The results indicated that the NO concentrations, iNOS activity, and mRNA expression in piglets were increased by feeding chitosan in a dose-dependent manner. In addition, chitosan improved the NO production in unstimulated PBMCs but inhibited its production in LPS-induced cells, which exerted bidirectional regulatory effects on the NO production via modulated iNOS activity and mRNA expression.


2001 ◽  
Vol 132 (3) ◽  
pp. 677-684 ◽  
Author(s):  
Angeles Alvarez ◽  
Laura Piqueras ◽  
Regina Bello ◽  
Amparo Canet ◽  
Lucrecia Moreno ◽  
...  

2011 ◽  
Vol 301 (3) ◽  
pp. H721-H729 ◽  
Author(s):  
Katsuhiko Noguchi ◽  
Naobumi Hamadate ◽  
Toshihiro Matsuzaki ◽  
Mayuko Sakanashi ◽  
Junko Nakasone ◽  
...  

An elevation of oxidized forms of tetrahydrobiopterin (BH4), especially dihydrobiopterin (BH2), has been reported in the setting of oxidative stress, such as arteriosclerotic/atherosclerotic disorders, where endothelial nitric oxide synthase (eNOS) is dysfunctional, but the role of BH2 in the regulation of eNOS activity in vivo remains to be evaluated. This study was designed to clarify whether increasing BH2 concentration causes endothelial dysfunction in rats. To increase vascular BH2 levels, the BH2 precursor sepiapterin (SEP) was intravenously given after the administration of the specific dihydrofolate reductase inhibitor methotrexate (MTX) to block intracellular conversion of BH2 to BH4. MTX/SEP treatment did not significantly affect aortic BH4 levels compared with control treatment. However, MTX/SEP treatment markedly augmented aortic BH2 levels (291.1 ± 29.2 vs. 33.4 ± 6.4 pmol/g, P < 0.01) in association with moderate hypertension. Treatment with MTX alone did not significantly alter blood pressure or BH4 levels but decreased the BH4-to-BH2 ratio. Treatment with MTX/SEP, but not with MTX alone, impaired ACh-induced vasodilator and depressor responses compared with the control treatment (both P < 0.05) and also aggravated ACh-induced endothelium-dependent relaxations ( P < 0.05) of isolated aortas without affecting sodium nitroprusside-induced endothelium-independent relaxations. Importantly, MTX/SEP treatment significantly enhanced aortic superoxide production, which was diminished by NOS inhibitor treatment, and the impaired ACh-induced relaxations were reversed with SOD ( P < 0.05), suggesting the involvement of eNOS uncoupling. These results indicate, for the first time, that increasing BH2 causes eNOS dysfunction in vivo even in the absence of BH4 deficiency, demonstrating a novel insight into the regulation of endothelial function.


Sign in / Sign up

Export Citation Format

Share Document