scholarly journals Localized and systemic variations in central motor drive at different local skin and muscle temperatures

2017 ◽  
Vol 313 (3) ◽  
pp. R219-R228
Author(s):  
Alex Lloyd ◽  
Lewis Picton ◽  
Margherita Raccuglia ◽  
Simon Hodder ◽  
George Havenith

This study investigated the ability to sustain quadriceps central motor drive while subjected to localized heat and metaboreceptive feedback from the contralateral leg. Eight active males each completed two counter-balanced trials, in which muscle temperature (Tm) of a single-leg (TEMP-LEG) was altered to 29.4°C (COOL) or 37.6°C (WARM), while the contralateral leg (CL-LEG) remained thermoneutral: 35.3°C and 35.2°C Tm in COOL and WARM, respectively. To activate metaboreceptive feedback, participants first performed one 120-s isometric maximal voluntary contraction (MVC) of the knee extensors in the TEMP-LEG, immediately followed by postexercise muscle ischemia (PEMI) via femoral blood flow occlusion. To assess central motor drive of a remote muscle group immediately following PEMI, another 120-s MVC was subsequently performed in the CL-LEG. Voluntary muscle activation (VA) was assessed using the twitch interpolation method. Perceived mental effort and limb discomfort were also recorded. In a cooled muscle, a significant increase in mean force output and mean VA (force, P < 0.001; VA, P < 0.05), as well as a significant decrease in limb discomfort ( P < 0.05) occurred during the sustained MVC in the TEMP-LEG. However, no differences between Tm were observed in mean force output, mean VA, or limb discomfort during the sustained MVC in the CL-LEG (force, P = 0.33; VA, P > 0.68; and limb discomfort, P = 0.73). The present findings suggest that elevated local skin temperature and Tm can increase limb discomfort and decrease central motor drive, but this does not limit systemic motor activation of a thermoneutral muscle group.

Author(s):  
Roland van den Tillaar ◽  
Eirik Lindset Kristiansen ◽  
Stian Larsen

This study compared the kinetics, barbell, and joint kinematics and muscle activation patterns between a one-repetition maximum (1-RM) Smith machine squat and isometric squats performed at 10 different heights from the lowest barbell height. The aim was to investigate if force output is lowest in the sticking region, indicating that this is a poor biomechanical region. Twelve resistance trained males (age: 22 ± 5 years, mass: 83.5 ± 39 kg, height: 1.81 ± 0.20 m) were tested. A repeated two-way analysis of variance showed that Force output decreased in the sticking region for the 1-RM trial, while for the isometric trials, force output was lowest between 0–15 cm from the lowest barbell height, data that support the sticking region is a poor biomechanical region. Almost all muscles showed higher activity at 1-RM compared with isometric attempts (p < 0.05). The quadriceps activity decreased, and the gluteus maximus and shank muscle activity increased with increasing height (p ≤ 0.024). Moreover, the vastus muscles decreased only for the 1-RM trial while remaining stable at the same positions in the isometric trials (p = 0.04), indicating that potentiation occurs. Our findings suggest that a co-contraction between the hip and knee extensors, together with potentiation from the vastus muscles during ascent, creates a poor biomechanical region for force output, and thereby the sticking region among recreationally resistance trained males during 1-RM Smith machine squats.


Author(s):  
Fabio Giuseppe Laginestra ◽  
Markus Amann ◽  
Emine Kirmizi ◽  
Gaia Giuriato ◽  
Chiara Barbi ◽  
...  

Muscle fatigue induced by voluntary exercise, which requires central motor drive, causes central fatigue that impairs endurance performance of a different, non-fatigued muscle. This study investigated the impact of quadriceps fatigue induced by electrically-induced (no central motor drive) contractions on single-leg knee-extension (KE) performance of the subsequently exercising ipsilateral quadriceps. On two separate occasions, eight males completed constant-load (85% of maximal power-output) KE exercise to exhaustion. In a counterbalanced manner, subjects performed the KE exercise with no pre-existing quadriceps fatigue in the contralateral leg on one day (No-PreF), while on the other day, the same KE exercise was repeated following electrically-induced quadriceps fatigue in the contralateral leg (PreF). Quadriceps fatigue was assessed by evaluating pre- to post-exercise changes in potentiated twitch force (ΔQtw,pot; peripheral-fatigue), and voluntary muscle activation (ΔVA; central-fatigue). As reflected by the 57±11% reduction in electrically-evoked pulse force, the electrically-induced fatigue protocol caused significant knee-extensors fatigue. KE endurance time to exhaustion was shorter during PreF compared to No-PreF (4.6±1.2 vs 7.7±2.4 min; p<0.01). While ΔQtw,pot was significantly larger in No-PreF compared to PreF (-60% vs -52%, p<0.05), ΔVA was greater in PreF (-14% vs -10%, p<0.05). Taken together, electrically-induced quadriceps fatigue in the contralateral leg limits KE endurance performance and the development of peripheral fatigue in the ipsilateral leg. These findings support the hypothesis that the crossover-effect of central fatigue is mainly mediated by group III/IV muscle afferent feedback and suggest that impairments associated with central motor drive may only play a minor role in this phenomenon.


2008 ◽  
Vol 33 (6) ◽  
pp. 1086-1095 ◽  
Author(s):  
Teatske M. Altenburg ◽  
Cornelis J. de Ruiter ◽  
Peter W.L. Verdijk ◽  
Willem van Mechelen ◽  
Arnold de Haan

A single shortening contraction reduces the force capacity of muscle fibers, whereas force capacity is enhanced following lengthening. However, how motor unit recruitment and discharge rate (muscle activation) are adapted to such changes in force capacity during submaximal contractions remains unknown. Additionally, there is limited evidence for force enhancement in larger muscles. We therefore investigated lengthening- and shortening-induced changes in activation of the knee extensors. We hypothesized that when the same submaximal torque had to be generated following shortening, muscle activation had to be increased, whereas a lower activation would suffice to produce the same torque following lengthening. Muscle activation following shortening and lengthening (20° at 10°/s) was determined using rectified surface electromyography (rsEMG) in a 1st session (at 10% and 50% maximal voluntary contraction (MVC)) and additionally with EMG of 42 vastus lateralis motor units recorded in a 2nd session (at 4%–47%MVC). rsEMG and motor unit discharge rates following shortening and lengthening were normalized to isometric reference contractions. As expected, normalized rsEMG (1.15 ± 0.19) and discharge rate (1.11 ± 0.09) were higher following shortening (p < 0.05). Following lengthening, normalized rsEMG (0.91 ± 0.10) was, as expected, lower than 1.0 (p < 0.05), but normalized discharge rate (0.99 ± 0.08) was not (p > 0.05). Thus, muscle activation was increased to compensate for a reduced force capacity following shortening by increasing the discharge rate of the active motor units (rate coding). In contrast, following lengthening, rsEMG decreased while the discharge rates of active motor units remained similar, suggesting that derecruitment of units might have occurred.


Author(s):  
Christopher Latella ◽  
Matheus Daros Pinto ◽  
James L. Nuzzo ◽  
Janet Louise Taylor

For a fatigued hand muscle, group III/IV afferent firing maintains intracortical facilitation (ICF) without influencing corticospinal excitability. Exercise of larger muscles produces greater afferent firing. Thus, this study investigated if fatigue-related firing of group III/IV afferents from a large muscle group (quadriceps) modulates intracortical and corticospinal networks. In two sessions, participants (n=18) completed a 2-minute maximal voluntary isometric contraction (MVIC) of knee extensors with (OCC) or without (CON) post-exercise blood flow occlusion to maintain afferent firing. Pre- and post-exercise, single- and paired-pulse transcranial magnetic stimulation (TMS) elicited motor evoked potentials (MEPs) from vastus lateralis (VL), vastus medialis and rectus femoris. Test pulse intensities evoked VL MEPs of ~0.5 mV and were adjusted post-exercise. The conditioning stimulus for ICF and short interval intracortical inhibition (SICI) was constant and set to evoke ~50% of maximum ICF. Muscle pain was also assessed (0-10 scale). Post-exercise, muscle pain was greater for OCC than CON (Median = 8.6 vs. 1.0; P<0.001). MEPs were depressed for CON (all muscles: ∆ -24.3 to -34.1%; P≤0.018) despite increased stimulus intensity (~10%, P<0.001), but both MEPs and intensity remained unchanged for OCC. ICF was depressed post-exercise in OCC (VL and RF: ∆ -59.8% and -28.8%, respectively P=0.016-0.018) but not CON (all muscles: ∆ -3.8 to -44.3%, P=0.726-1.0), but was not different between conditions (interactions: P=0.143-0.252). No interactions were observed for SICI (all muscles: P≥0.266). Group III/IV afferent firing counteracts the post-contraction depression of MEPs in quadriceps. However, intracortical inhibitory and facilitatory networks are not implicated in this response.


2014 ◽  
Vol 39 (7) ◽  
pp. 781-786 ◽  
Author(s):  
Catriona A. Burdon ◽  
Christopher S. Easthope ◽  
Nathan A. Johnson ◽  
Phillip G. Chapman ◽  
Helen O’Connor

This study aimed to investigate the effect of exercise-induced hyperthermia on central fatigue and force decline in exercised and nonexercised muscles and whether ingestion of ice slushy (ICE) ameliorates fatigue. Eight participants (5 males, 3 females) completed 45 s maximal voluntary isometric contractions (MVIC) with elbow flexors and knee extensors at baseline and following an exercise-induced rectal temperature (Trec) of 39.3 ± 0.2 °C. Percutaneous electrical muscle stimulation was superimposed at 15, 30 and 44 s during MVICs to assess muscle activation. To increase Trec to 39.3 °C, participants cycled at 60% maximum power output for 42 ± 11 min in 40 °C and 50% relative humidity. Immediately prior to each MVIC, participants consumed 50 g of ICE (–1 °C) or thermoneutral drink (38 °C, CON) made from 7.4% carbohydrate beverage. Participants consumed water (19 °C) during exercise to prevent hypohydration. Voluntary muscle force production and activation in both muscle groups were unchanged at Trec 39.3 °C with ICE (knee extensors: 209 ± 152 N) versus CON (knee extensors: 255 ± 157 N, p = 0.19). At Trec 39.3 °C, quadriceps mean force (232 ± 151 N) decreased versus baseline (302 ± 180 N, p < 0.001) and mean voluntary activation was also decreased (by 15% ± 11%, p < 0.001). Elbow flexor mean force decreased from 179 ± 67 N to 148 ± 65 N when Trec was increased to 39.3 °C (p < 0.001) but mean voluntary activation was not reduced at 39.3 °C (5% ± 25%, p = 0.79). After exercise-induced hyperthermia, ICE had no effect on voluntary activation or force production; however, both were reduced from baseline in the exercised muscle group. Peripheral fatigue was greater than the central component and limited the ability of an intervention designed to alter central fatigue.


1994 ◽  
Vol 71 (3) ◽  
pp. 1096-1110 ◽  
Author(s):  
S. J. Bonasera ◽  
T. R. Nichols

1. To study the means whereby ankle biomechanics are represented in the interneuronal circuitry of the spinal cord we examined stretch-evoked reflex interactions between the physiological extensors flexor hallucis longus (FHL) and flexor digitorum longus (FDL) as well as their interactions with gastrocnemius (G), soleus (S), and the quadriceps group (Q) in 34 unanesthetized decerebrate cats. To evoke stretch, DC motors provided ramp-hold-release length changes to tendons detached from their bony insertions. Semiconductor myographs measured resultant muscle force response. Reflexes were examined under both quiescent (no active force generation) and activated conditions; muscle activation was achieved through either crossed-extension or flexion reflexes. 2. FHL and FDL share mutual excitatory stretch-evoked interactions under most conditions examined. These interactions depended on muscle length, were asymmetric (with FHL contributing a larger magnitude of reflex excitation onto FDL), and occurred at a latency of 16 ms. Mutual Ia synergism previously described for these two muscles provides a basis for all of the above findings. Our data demonstrate that for this muscle pair, reflex connectivities revealed at the intracellular level can be extrapolated to cover the entire motoneuron pool; further, our data directly demonstrate the net mechanical result of ensemble synaptic events. 3. FHL was found to share strong, mutually inhibitory stretch-evoked interactions with G, S, and Q. Stepwise regression statistical analyses determined that these interactions depended on recipient muscle force and donor muscle force. These reflex interactions all occurred at a latency of 28 +/- 4 (SE) ms. Further, the heterogenic inhibition between FHL/G and FHL/S was attenuated by strychnine infusion (intravenous) but unaffected by either mecamylamine, picrotoxin, or baclofen infusion (intravenous, intrathecal). Disynaptic Ib inhibition previously described among hindlimb extensors provides a basis for the above findings; our data demonstrate that under certain conditions the ensemble activity of this system can cause a dramatic decline in whole muscle force output. 4. By contrast, FDL was found to share mutually inhibitory, stretch-evoked reflex interactions with G, S, and Q that were much weaker than those observed between FHL and these same muscles. The small magnitude of inhibition observed in these interactions made it difficult to assess reflex latency or to determine the factor(s) that best predicted the heterogenic inhibition. 5. This study provides further evidence of intrinsic differences in interneuronal organization between muscles whose activity occurs in a periodic manner during locomotion ("stereotypical") and a muscle whose locomotor activity is characterized by both periodic and nonperiodic components ("facultative").(ABSTRACT TRUNCATED AT 400 WORDS)


2019 ◽  
Vol 9 (10) ◽  
pp. 250
Author(s):  
Saied Jalal Aboodarda ◽  
Cindy Xin Yu Zhang ◽  
Ruva Sharara ◽  
Madeleine Cline ◽  
Guillaume Y Millet

To investigate the influence of pre-induced fatigue in one leg on neuromuscular performance and corticospinal responses of the contralateral homologous muscles, three experiments were conducted with different exercise protocols; A (n = 12): a 60 s rest vs. time-matched sustained left leg knee extension maximum voluntary contraction (MVC), B (n = 12): a 60 s rest vs. time-matched left leg MVC immediately followed by 60 s right leg MVC, and C (n = 9): a similar protocol to experiment B, but with blood flow occluded in the left leg while the right leg was performing the 60 s MVC. The neuromuscular assessment included 5 s knee extensions at 100%, 75%, and 50% of MVC. At each force level, transcranial magnetic and peripheral nerve stimuli were elicited to investigate the influence of different protocols on the right (tested) knee extensors’ maximal force output, voluntary activation, corticospinal excitability, and inhibition. The pre-induced fatigue in the left leg did not alter the performance nor the neuromuscular responses recorded from the right leg in the three experiments (all p > 0.3). However, enhanced corticospinal pathway excitability was evident in the tested knee extensors (p = 0.002). These results suggest that the pre-induced fatigue and muscle ischemia in one leg did not compromise the central and peripheral components of the neuromuscular function in the tested contralateral leg.


2021 ◽  
Vol 16 (1) ◽  
pp. 117-123
Author(s):  
Jay A. Collison ◽  
Jason Moran ◽  
Inge Zijdewind ◽  
Florentina J. Hettinga

Purpose: To examine the differences in muscle fatigability after resistance exercise performed with fast tempo (FT) compared with slow tempo (ST). Methods: A total of 8 resistance-trained males completed FT and ST hexagonal-barbell deadlifts, consisting of 8 sets of 6 repetitions at 60% 3-repetition maximum, using a randomized crossover design. Each FT repetition was performed with maximal velocity, while each repetition during ST was performed with a 3-1-3 (eccentric/isometric/concentric) tempo (measured in seconds). Isometric maximal voluntary contraction, voluntary muscle activation, and evoked potentiated twitch torque of the knee extensors were determined using twitch interpolation before, during (set 4), and after exercise. Displacement–time data were measured during the protocols. Results: The mean bar velocity and total concentric work were higher for FT compared with ST (995 [166] W vs 233 [52] W; 0.87 [0.05] m/s vs 0.19 [0.05] m/s; 4.8 [0.8] kJ vs 3.7 [1.1] kJ). Maximal voluntary contraction torque, potentiated twitch, and voluntary muscle activation were significantly reduced after FT (−7.8% [9.2%]; −5.2% [9.2%], −8.7% [12.2%]) and ST (−11.2% [8.4%], −13.3% [8.1%], −1.8% [3.6%]). Conclusion: The decline in maximal voluntary force after both the FT and ST hexagonal-barbell deadlifts exercise was accompanied by a similar decline in contractile force and voluntary muscle activation.


2006 ◽  
Vol 100 (4) ◽  
pp. 1361-1369 ◽  
Author(s):  
Melissa M. Thomas ◽  
Stephen S. Cheung ◽  
Geoff C. Elder ◽  
Gordon G. Sleivert

Fatigue during hyperthermia may be due in part to a failure of the central nervous system to fully activate the working muscles. We investigated the effects of passive hyperthermia on maximal plantar flexor isometric torque (maximal isometric voluntary contraction) and voluntary activation to determine the roles of local skin temperature, core temperature, and peripheral muscle temperature in fatigue. Nine healthy subjects were passively heated from 37.2 to 39.5°C (core temperature) and then cooled back down to 37.9°C using a liquid-conditioning garment, with the right leg kept at a thermoneutral temperature throughout the protocol, whereas the left leg was allowed to heat and cool. Passive heating resulted in significant decreases in torque from [mean (SD)] 172 N·m (SD 39) to 160 N·m (SD 44) and in voluntary activation from 96% (SD 2) to 91% (SD 5) in the heated leg, and maximal isometric voluntary contraction decreased similarly from 178 N·m (SD 37) to 165 N·m (SD 38) and voluntary activation from 97% (SD 2) to 94% (SD 5) in the thermoneutral leg. The initiation of cooling, which produced a rapid decrease in skin temperature and cardiovascular strain [heart rate reserve decreased from 58% (SD 12) to 31% (SD 12)], did not immediately restore either torque or voluntary activation. However, when core temperature was lowered back to normal, torque and voluntary activation were restored to baseline values. It was concluded that an increase in core temperature is a factor responsible for reducing voluntary activation during brief voluntary isometric contractions and that temperature-induced changes in the contractile properties of muscle and local thermal afferent input from the skin do not contribute significantly to the decrement in torque.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Ilario Puglia ◽  
Michele Balsamo ◽  
Marco Vukich ◽  
Valfredo Zolesi

The study and analysis of human physiology during short- and long-duration space flights are the most valuable approach in order to evaluate the effect of microgravity on the human body and to develop possible countermeasures in prevision of future exploratory missions and Mars expeditions. Hand performances such as force output and manipulation capacity are fundamental for astronauts’ intra- and extravehicular activities. Previous studies on upper limb conducted on astronauts during short-term missions (10 days) indicated a temporary partial reduction in the handgrip maximum voluntary contraction (MVC) followed by a prompt recovery and adaptation to weightlessness during the last days of the mission. In the present study, we report on the “Crew’s Health: Investigation on Reduced Operability” (CHIRO) protocol, developed for handgrip and pinch force investigations, performed during the six months increment 7 and increment 8 (2003-2004) onboard International Space Station (ISS). We found that handgrip and pinch force performance are reduced during long-term increments in space and are not followed by adaptation during the mission, as conversely reported during short-term increment experiments. The application of protocols developed in space will be eligible to astronauts during long-term space missions and to patients affected by muscle atrophy diseases or nervous system injury on Earth.


Sign in / Sign up

Export Citation Format

Share Document