Metabolic acidosis augments exercise pressor responses in chronic kidney disease
Chronic kidney disease (CKD) patients experience augmented blood pressure (BP) reactivity during exercise that is associated with an increased risk of cardiovascular mortality. Exaggerated exercise pressor responses in CKD are in part mediated by augmented sympathetic nerve activation due to heightened muscle mechanoreflex. One mechanism that may lead to sensitization of the muscle mechanoreflex in CKD is metabolic acidosis. We hypothesized that CKD patients with low serum [bicarbonate] would exhibit exaggerated increases in arterial BP, greater reductions in muscle interstitial pH, and fatigue earlier during exercise compared with CKD patients with normal serum bicarbonate concentration ([bicarbonate]). Eighteen CKD participants with normal serum [bicarbonate] (≥24 mmol/l, normal-bicarb) and 9 CKD participants with mild metabolic acidosis ([bicarbonate] range 20–22 mmol/l, low-bicarb) performed rhythmic handgrip (RHG) exercise to volitional fatigue at 40% of maximal voluntary contraction. BP, heart rate, and muscle interstitial pH using near infrared spectroscopy were measured continuously. While mean arterial pressure (MAP) increased with exercise in both groups ( P ≤ 0.002), CKD with low-bicarb had an exaggerated MAP response compared with CKD with normal-bicarb (+5.9 ± 1.3 mmHg/30 s vs. +2.6 ± 0.5 mmHg/30 s, P = 0.01). The low-bicarb group reached exhaustion earlier than the normal-bicarb group (179 ± 21 vs. 279 ± 19 s, P = 0.003). There were no differences in the change in muscle interstitial pH during exercise between groups ( P = 0.31). CKD patients with metabolic acidosis have augmented exercise-induced increases in BP and poorer exercise tolerance. There was no difference in change in muscle interstitial pH between groups, however, suggesting that augmented exercise BP responses in metabolic acidosis are not due to impaired muscle-buffering capacity.