Cold-induced alterations of phospholipid fatty acyl composition in brown adipose tissue mitochondria are independent of uncoupling protein-1

2007 ◽  
Vol 293 (3) ◽  
pp. R1086-R1093 ◽  
Author(s):  
Augustine Ocloo ◽  
Irina G. Shabalina ◽  
Jan Nedergaard ◽  
Martin D. Brand

The recruitment process induced by acclimation of mammals to cold includes a marked alteration in the acyl composition of the phospholipids of mitochondria from brown adipose tissue: increases in 18:0, 18:2( n–6), and 20:4( n–6) and decreases in 16:0, 16:1, 18:1, and 22:6( n–3). A basic question is whether these alterations are caused by changes in the concentration of uncoupling protein-1 (UCP1) or the thermogenesis it mediates—implying that they are secondary effects—or whether they are an integrated, independent part of the recruitment process. This question was addressed here using wild-type and UCP1-ablated C57BL/6 mice acclimated to 24°C or 4°C. In wild-type mice, the phospholipid fatty acyl composition of mitochondria from brown adipose tissue showed the changes in response to cold that were expected from observations in other species and strains. The changes were specific, as different changes occurred in skeletal muscle mitochondria. In UCP1-ablated mice, cold acclimation induced acyl alterations in brown adipose tissue that were qualitatively identical and quantitatively similar to those in wild-type mice. Therefore, neither the increased content of UCP1 nor mitochondrial uncoupling altered the effect of cold on acyl composition. Cold acclimation in wild-type mice had little effect on phospholipid acyl composition in muscle mitochondria, but cold-acclimation in UCP1-ablated mice caused significant alterations, probably due to sustained shivering. Thus, the alterations in brown adipose tissue phospholipid acyl composition are revealed to be an independent part of the recruitment process, and their functional significance for thermogenesis should be elucidated.

2015 ◽  
Vol 112 (22) ◽  
pp. 6973-6978 ◽  
Author(s):  
Yang Lee ◽  
Chrissie Willers ◽  
Edmund R. S. Kunji ◽  
Paul G. Crichton

Uncoupling protein 1 (UCP1) catalyzes fatty acid-activated, purine nucleotide-sensitive proton leak across the mitochondrial inner membrane of brown adipose tissue to produce heat, and could help combat obesity and metabolic disease in humans. Studies over the last 30 years conclude that the protein is a dimer, binding one nucleotide molecule per two proteins, and unlike the related mitochondrial ADP/ATP carrier, does not bind cardiolipin. Here, we have developed novel methods to purify milligram amounts of UCP1 from native sources by using covalent chromatography that, unlike past methods, allows the protein to be prepared in defined conditions, free of excess detergent and lipid. Assessment of purified preparations by TLC reveal that UCP1 retains tightly bound cardiolipin, with a lipid phosphorus content equating to three molecules per protein, like the ADP/ATP carrier. Cardiolipin stabilizes UCP1, as demonstrated by reconstitution experiments and thermostability assays, indicating that the lipid has an integral role in the functioning of the protein, similar to other mitochondrial carriers. Furthermore, we find that UCP1 is not dimeric but monomeric, as indicated by size exclusion analysis, and has a ligand titration profile in isothermal calorimetric measurements that clearly shows that one nucleotide binds per monomer. These findings reveal the fundamental composition of UCP1, which is essential for understanding the mechanism of the protein. Our assessment of the properties of UCP1 indicate that it is not unique among mitochondrial carriers and so is likely to use a common exchange mechanism in its primary function in brown adipose tissue mitochondria.


1988 ◽  
Vol 255 (6) ◽  
pp. R874-R881 ◽  
Author(s):  
I. R. Park ◽  
J. Himms-Hagen

We studied the role of the sympathetic innervation in development and maintenance of increased levels of uncoupling protein (UCP) and of thyroxine 5'-deiodinase (TD) during cold-induced growth of brown adipose tissue (BAT). Interscapular BAT was unilaterally (and in some experiments, bilaterally) denervated either before acclimation to cold (4 degrees C) for 12 days or after 14 days of a total 28-day period of acclimation to cold. BAT norepinephrine was reduced to 3-7% of the normal level in denervated BAT for up to 26 days. Denervation slowed, but did not prevent, cold-induced increases in total protein, in mitochondrial GDP binding, and in mitochondrial UCP concentration, which all reached 50% or more of the elevated level in intact tissue. In contrast, TD activity did not exceed 10% of the elevated level in intact tissue at any time. Denervation after cold acclimation resulted in a very rapid loss of TD activity, a slower and selective loss (after a lag of 1 day) of UCP, and a much slower loss of tissue protein. We conclude that the sympathetic innervation is required for an optimal trophic response of BAT to cold acclimation and for maintenance in the hypertrophied state but that other factors are also involved. Induction and maintenance of TD in BAT does need the sympathetic innervation.


2008 ◽  
Vol 19 (12) ◽  
pp. 840-847 ◽  
Author(s):  
Sachiko Nomura ◽  
Takashi Ichinose ◽  
Manabu Jinde ◽  
Yu Kawashima ◽  
Kaoru Tachiyashiki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document