Prenatal programming of hypernatremia and hypertension in neonatal lambs

2005 ◽  
Vol 288 (1) ◽  
pp. R97-R103 ◽  
Author(s):  
Michael G. Ross ◽  
Mina Desai ◽  
Catalina Guerra ◽  
Shengbiao Wang

Maternal water restriction and the accompanying dehydration-induced anorexia may induce long-term physiological changes in offspring. We determined the impact of prenatal hypertonicity (Pre-Dehy) on offspring cardiovascular and osmoregulatory function. Pre-Dehy lambs were exposed to in utero hypernatremia (8- to 10-meq increase; 110–150 days of gestation) induced by maternal water restriction. Control lambs were born to ewes provided ad libitum water and food throughout gestation. After delivery, all ewes were provided ad libitum water and all newborns were allowed ad libitum nursing. Lambs were prepared with vascular and bladder catheters at 15 ± 2 days of age and studied at 21 ± 2 days. After a 2-h basal period, lambs received an infusion of hypotonic (0.075 M) NaCl (0.15 ml·kg−1·h−1 iv) for 2 h. Lamb arterial blood pressure was monitored, and blood samples were obtained before, during, and after infusion. During the neonatal basal period, Pre-Dehy lambs had significantly increased plasma osmolality (302 ± 1 vs. 294 ± 1 mosmol/kgH2O, P < 0.01), sodium levels (144 ± 1 vs. 140 ± 1 meq/l, P < 0.01), hematocrit (28 ± 1% vs. 25 ± 1%, P < 0.05), and mean arterial blood pressure (79 ± 2 vs. 68 ± 1 mmHg, P < 0.001) compared with control lambs. Despite the infusion of hypotonic saline, Pre-Dehy lambs maintained relative hypertonicity, hypernatremia, and hypertension. However, plasma arginine vasopressin, glomerular filtration rate, and urinary osmolar and sodium excretion and clearance (per kg body wt) were similar in the groups. Offspring of prenatally water-restricted ewes exhibit hypernatremia, hypertonicity, and hypertension, which persist despite hypotonic saline infusion. In utero hypertonicity and perhaps maternal nutrient stress may program offspring osmoregulation and systemic arterial hypertension.

2005 ◽  
Vol 288 (6) ◽  
pp. H2659-H2665 ◽  
Author(s):  
Mina Desai ◽  
Catalina Guerra ◽  
Shengbiao Wang ◽  
Michael G. Ross

We determined the cardiovascular and AVP responses of prenatally dehydrated (PreDehy) neonates to intravascular hemorrhage. Ewes with singleton fetuses were subjected to water restriction from 110 days of gestation to full term to achieve hypernatremia of 8–10 meq/l. Water and food were provided ad libitum to control ewes. After delivery, water and food were provided ad libitum to ewes from both groups, and newborns were allowed to nurse ad libitum. At 15 ± 2 days of age, PreDehy and control lambs were prepared with bladder and femoral catheters and studied at 25 ± 2 days of age. After a 2-h basal period, lambs were hemorrhaged to 30% of blood volume over 1 h (0.5% of blood volume/min) and monitored 1 h after hemorrhage. Neonatal arterial blood pressure was measured, and blood samples were collected. Basal plasma sodium levels, plasma osmolality, hematocrit, and mean arterial pressure were increased in PreDehy lambs compared with controls. Both groups had similar basal AVP levels and heart rate. In response to hemorrhage, all parameters remained significantly elevated in PreDehy lambs. Blood pressure decreased less in PreDehy lambs than in controls. The hemorrhage-AVP threshold (percent blood volume withdrawal at which plasma AVP values significantly increased) was markedly elevated (20 vs. 15%) and peak hemorrhage-induced AVP plasma levels were lower (5.6 ± 1.5 vs. 10.1 ± 1.5 pg/ml, P < 0.01) in PreDehy lambs than in controls. Thus offspring of dehydrated ewes demonstrate enhanced AVP secretory responses to hypotension. Despite potential long-term adverse effects of systemic hypertension, these results suggest a protective effect of prenatal water restriction on offspring cardiovascular homeostasis during blood volume reduction.


Toxics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 105
Author(s):  
Ilona Górna ◽  
Marta Napierala ◽  
Ewa Florek

The metabolic syndrome is a combination of several metabolic disorders, such as cardiovascular disease, atherosclerosis, and type 2 diabetes. Lifestyle modifications, including quitting smoking, are recommended to reduce the risk of metabolic syndrome and its associated complications. Not much research has been conducted in the field of e-cigarettes and the risk of metabolic syndrome. Furthermore, taking into account the influence of e-cigarettes vaping on the individual components of metabolic syndrome, i.e, abdominal obesity, insulin resistance, dyslipidemia and elevated arterial blood pressure, the results are also ambiguous. This article is a review and summary of existing reports on the impact of e-cigarettes on the development of metabolic syndrome as well as its individual components. A critical review for English language articles published until 30 June 2020 was made, using a PubMed (including MEDLINE), Cochrane, CINAHL Plus, and Web of Science data. The current research indicated that e-cigarettes use does not affect the development of insulin resistance, but could influence the level of glucose and pre-diabetic state development. The lipid of profile an increase in the TG level was reported, while the influence on the level of concentration of total cholesterol, LDL fraction, and HDL fraction differed. In most cases, e-cigarettes use increased the risk of developing abdominal obesity or higher arterial blood pressure. Further research is required to provide more evidence on this topic.


Endocrinology ◽  
2003 ◽  
Vol 144 (10) ◽  
pp. 4332-4337 ◽  
Author(s):  
Mina Desai ◽  
Catalina Guerra ◽  
Shengbiao Wang ◽  
Michael G. Ross

Lambs exposed in utero to maternal hypertonicity demonstrate plasma hypertonicity and arterial hypertension. To determine whether hypertonicity is due to an altered osmoregulatory set point, we examined arginine-vasopressin and cardiovascular responses to hypertonic saline infusion in these offspring. Study lambs [dehydrated (Dehy)] were exposed to maternal hypernatremia (8–10 mEq/liter increase; 110–150 d gestation) induced by water restriction. Control singleton and Control twins were born to ewes provided ad libitum water. We anticipated reduced birth weight due to maternal dehydration-induced anorexia and therefore included a Control group of twin gestations to approach a similar birth weight near term. After delivery, ewes from all three groups were provided ad libitum water, and their newborns were allowed ad libitum nursing. At 15 ± 2 d of age, lambs were prepared with bladder and vascular catheters. At 23 ± 2 d, after a 2-h basal period, neonatal lambs were iv infused with hypertonic 0.83 m NaCl (0.075 ml/kg·h) for 2 h, followed by a 2-h recovery. Neonatal mean arterial pressure and urine flow were continuously monitored, and blood samples were obtained before, during, and after infusion. During the basal period, Dehy neonates and Control twins demonstrated significantly increased plasma sodium levels and mean arterial pressure than Control singletons. In addition, the Dehy neonates had significantly increased plasma osmolality compared with Control singletons and twins. In response to hypertonic infusion, the Dehy offspring continued to exhibit hypertonicity and hypertension. Importantly, plasma tonicity and blood pressure were greatest in Dehy singletons, lowest in singleton controls, and intermediate in twin controls. Furthermore, the plasma osmolality threshold for AVP secretion was significantly higher in Dehy singletons (290 ± 2 mOsm/kg) than Control twins (285 ± 1 mOsm/kg) and Control singletons (280 ± 2 mOsm/kg), indicating in utero programming of an altered set point for systemic osmolality and blood pressure regulation. Because both twin gestation and dehydration-anorexia incur potential fetal nutritional stress, the results suggest that both in utero hypertonicity and nutrition reduction contribute to offspring programming. We postulate that the nutritional stress associated with twins (as well as dehydration-induced anorexia) contributes to increased plasma sodium levels, whereas the increased plasma osmolality is due to in utero hypertonicity.


2002 ◽  
Vol 282 (6) ◽  
pp. R1718-R1729 ◽  
Author(s):  
Sean D. Stocker ◽  
Edward M. Stricker ◽  
Alan F. Sved

The present study sought to determine whether arterial baroreceptor afferents mediate the inhibitory effect of an acute increase in arterial blood pressure (AP) on thirst stimulated by systemically administered ANG II or by hyperosmolality. Approximately 2 wk after sinoaortic denervation, one of four doses of ANG II (10, 40, 100, or 250 ng · kg−1 · min−1) was infused intravenously in control and complete sinoaortic-denervated (SAD) rats. Complete SAD rats ingested more water than control rats when infused with 40, 100, or 250 ng · kg−1 · min−1 ANG II. Furthermore, complete SAD rats displayed significantly shorter latencies to drink compared with control rats. In a separate group of rats, drinking behavior was stimulated by increases in plasma osmolality, and mean AP was raised by an infusion of phenylephrine (PE). The infusion of PE significantly reduced water intake and lengthened the latencies to drink in control rats but not in complete SAD rats. In all experiments, drinking behavior of rats that were subjected to sinoaortic denervation surgery but had residual baroreceptor reflex function (partial SAD rats) was similar to that of control rats. Thus it appears that arterial baroreceptor afferents mediate the inhibitory effect of an acute increase in AP on thirst stimulated by ANG II or hyperosmolality.


2000 ◽  
Vol 278 (1) ◽  
pp. R11-R18 ◽  
Author(s):  
Niels C. F. Sandgaard ◽  
Jens Lundbæk Andersen ◽  
Peter Bie

.—Saline was infused intravenously for 90 min to normal, sodium-replete conscious dogs at three different rates (6, 20, and 30 μmol ⋅ kg− 1 ⋅ min− 1) as hypertonic solutions (HyperLoad-6, HyperLoad-20, and HyperLoad-30, respectively) or as isotonic solutions (IsoLoad-6, IsoLoad-20, and IsoLoad-30, respectively). Mean arterial blood pressure did not change with any infusion of 6 or 20 μmol ⋅ kg− 1 ⋅ min− 1. During HyperLoad-6, plasma vasopressin increased by 30%, although the increase in plasma osmolality (1.0 mosmol/kg) was insignificant. During HyperLoad-20, plasma ANG II decreased from 14 ± 2 to 7 ± 2 pg/ml and sodium excretion increased markedly (2.3 ± 0.8 to 19 ± 8 μmol/min), whereas glomerular filtration rate (GFR) remained constant. IsoLoad-20 decreased plasma ANG II similarly (13 ± 3 to 7 ± 1 pg/ml) concomitant with an increase in GFR and a smaller increase in sodium excretion (1.9 ± 1.0 to 11 ± 6 μmol/min). HyperLoad-30 and IsoLoad-30 increased mean arterial blood pressure by 6–7 mmHg and decreased plasma ANG II to ∼6 pg/ml, whereas sodium excretion increased to ∼60 μmol/min. The data demonstrate that, during slow sodium loading, the rate of excretion of sodium may increase 10-fold without changes in mean arterial blood pressure and GFR and suggest that the increase may be mediated by a decrease in plasma ANG II. Furthermore, the vasopressin system may respond to changes in plasma osmolality undetectable by conventional osmometry.


2015 ◽  
Vol 101 (1) ◽  
pp. 124-134 ◽  
Author(s):  
B. Balmain ◽  
G. M. Stewart ◽  
A. Yamada ◽  
J. Chan ◽  
L. J. Haseler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document