The unfolded protein response is triggered following a single, unaccustomed resistance-exercise bout

2014 ◽  
Vol 307 (6) ◽  
pp. R664-R669 ◽  
Author(s):  
Daniel I. Ogborn ◽  
Bryon R. McKay ◽  
Justin D. Crane ◽  
Gianni Parise ◽  
Mark A. Tarnopolsky

Endoplasmic reticulum (ER) stress results from an imbalance between the abundance of synthesized proteins and the folding capacity of the ER. In response, the unfolded protein response (UPR) attempts to restore ER function by attenuating protein synthesis and inducing chaperone expression. Resistance exercise (RE) stimulates protein synthesis; however, a postexercise accumulation of unfolded proteins may activate the UPR. Aging may impair protein folding, and the accumulation of oxidized and misfolded proteins may stimulate the UPR at rest in aged muscle. Eighteen younger ( n = 9; 21 ± 3 yr) and older ( n = 9; 70 ± 4 yr) untrained men completed a single, unilateral bout of RE using the knee extensors (four sets of 10 repetitions at 75% of one repetition maximum on the leg press and leg extension) to determine whether the UPR is increased in resting, aged muscle and whether RE stimulates the UPR. Muscle biopsies were taken from the nonexercised and exercised vastus lateralis at 3, 24, and 48 h postexercise. Age did not affect any of the proteins and transcripts related to the UPR. Glucose-regulated protein 78 (GRP78) and protein kinase R-like ER protein kinase (PERK) proteins were increased at 48 h postexercise, whereas inositol-requiring enzyme 1 alpha (IRE1α) was elevated at 24 h and 48 h. Despite elevated protein, GRP78 and PERK mRNA was unchanged; however, IRE1α mRNA was increased at 24 h postexercise. Activating transcription factor 6 (ATF6) mRNA increased at 24 h and 48 h, whereas ATF4, CCAAT/enhancer-binding protein homologous protein (CHOP), and growth arrest and DNA damage protein 34 mRNA were unchanged. These data suggest that RE activates specific pathways of the UPR (ATF6/IRE1α), whereas PERK/eukaryotic initiation factor 2 alpha/CHOP does not. In conclusion, acute RE results in UPR activation, irrespective of age.

2016 ◽  
Vol 36 (13) ◽  
pp. 1868-1880 ◽  
Author(s):  
David W. Reid ◽  
Angeline S. L. Tay ◽  
Jeyapriya R. Sundaram ◽  
Irene C. J. Lee ◽  
Qiang Chen ◽  
...  

Phosphorylation of eukaryotic initiation factor 2α (eIF2α) controls transcriptome-wide changes in mRNA translation in stressed cells. While phosphorylated eIF2α (P-eIF2α) attenuates global protein synthesis, mRNAs encoding stress proteins are more efficiently translated. Two eIF2α phosphatases, containing GADD34 and CReP, catalyze P-eIF2α dephosphorylation. The current view of GADD34, whose transcription is stress induced, is that it functions in a feedback loop to resolve cell stress. In contrast, CReP, which is constitutively expressed, controls basal P-eIF2α levels in unstressed cells. Our studies show that GADD34 drives substantial changes in mRNA translation in unstressed cells, particularly targeting the secretome. Following activation of the unfolded protein response (UPR), rapid translation ofGADD34mRNA occurs and GADD34 is essential for UPR progression. In the absence of GADD34, eIF2α phosphorylation is persistently enhanced and the UPR translational program is significantly attenuated. This “stalled” UPR is relieved by the subsequent activation of compensatory mechanisms that include AKT-mediated suppression of PKR-like kinase (PERK) and increased expression ofCRePmRNA, partially restoring protein synthesis. Our studies highlight the coordinate regulation of UPR by the GADD34- and CReP-containing eIF2α phosphatases to control cell viability.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaomei Liu ◽  
Yanyan Guo ◽  
Jun Wang ◽  
Liangliang Zhu ◽  
Linlin Gao

Accumulating evidence suggests that fetal growth restriction (FGR) leads to the development of diabetes mellitus in adults. The aim of this study was to investigate the effect of protein malnutrition in utero on the pancreatic unfolded protein response (UPR) pathway in FGR offspring. An FGR model was developed by feeding a low-protein diet to pregnant rats throughout gestation. Eighty-four UPR pathway components in the pancreas were investigated by quantitative PCR arrays and confirmed by qPCR and western blotting. Activating transcription factor (Atf4 and Atf6), herpud1, protein kinase R-like endoplasmic reticulum kinase (Perk), X-box binding protein 1 (Xbp1), and the phosphorylation of eIF2α were upregulated, while cyclic AMP-responsive element-binding protein 3-like protein was markedly downregulated in FGR fetuses compared with controls. Investigation in adult offspring revealed temporal changes, for most UPR factors restored to normal, except that dysregulation of Atf6 and Creb3l3 maintained until adulthood. Moreover, autophagy was suppressed in FGR fetal pancreas and may be associated with decreased activation of AMP-activated protein kinase (Ampk). Apoptosis regulators Bax and cleaved-caspase 3 and 9 were upregulated in FGR fetal pancreas. Given that islet size and number were decreased in FGR fetus, we speculated that the aberrant intrauterine milieu impaired UPR signaling in fetal pancreas development. Whether these alterations early in life contribute to the predisposition of FGR fetuses to adult metabolic disorders invites further exploration.


Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 2280-2289 ◽  
Author(s):  
Dong Yun Lee ◽  
Bill Sugden

The oncogene latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) without a ligand drives proliferation of EBV-infected B cells. Its levels vary in cells of clonal populations by more than 100-fold, which leads to multiple distinct activities of the oncogene. At intermediate levels it drives proliferation, and at high levels it inhibits general protein synthesis by inducing phosphorylation of eukaryotic initiation factor 2α (eIF2α). We have found that LMP1 activates PERK to induce phosphorylation of eIF2α, which upregulates activating transcription factor 4 (ATF4) expression. ATF4, in turn, transactivates LMP1's own promoter. LMP1 activates not only PERK but also inositol requiring kinase 1 (IRE1) and ATF6, 3 pathways of the unfolded protein response (UPR). Increasing expression levels of LMP1 induced a dose-dependent increase in IRE1 activity, as measured by its “splicing” of XBP-1. These infected B cells secrete immunoglobins independent of the levels of LMP1, indicating that only a threshold level of XBP-1 is required for the secretion. These findings indicate that LMP1's activation of the UPR is a normal event in a continuum of LMP1's expression that leads both to stimulatory and inhibitory functions and regulates the physiology of EBV-infected B cells in multiple, unexpected modes.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Elena Vladykoskaya ◽  
Petra Haberzettl ◽  
Yonis Ahmed ◽  
Bradford G Hill ◽  
Srinivas D Sithu ◽  
...  

Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are associated with atherosclerosis. Expression of UPR target genes such as activating transcription factor 3 (ATF3) and ATF4 is markedly increased in human atherosclerotic lesions. Staining for these proteins co-localizes with the staining with antibodies that recognize the aldehydic epitopes of oxidized LDL, suggesting that lipid-derived aldehydes could be involved in mediating ER stress and UPR. We examined the role of phospholipid aldehyde, 1-palmitoyl-2-(5-oxovaleroyl)- sn -glycero-3-phosphocholine (POVPC), unsaturated lipid-derived aldehydes- 4-hydroxy, trans -2-nonenal (HNE) and acrolein in the induction of ER-stress and UPR in human aortic endothelial cells (HAEC) and human umbical vein endothelial cells (HUVEC). POVPC, HNE and acrolein (10 –25 μM) increased the phosphorylation of eIF2α (eukaryotic initiation factor-2α) by 1.5–5 fold (P<0.001) and induced its downstream effector proteins - ATF4 (1.5–3.5 fold; P<0.001) and ATF3 (4–10 fold; P<0.0001). Incubation of HAEC with these aldehydes also increased the adhesion of THP-1 cells (monocyte) to HAEC by 1.4–1.6 fold (P<0.01). Moreover, incubation of endothelial cells with POVPC increased the mRNA level of the pro-inflammatory cytokine IL-8 by >25 fold (P<0.0001). Chemical chaperone, phenyl butyric acid (PBA), diminished aldehydes-induced expression of ATF3 and ATF4 proteins, endothelial cell-monocyte adhesion and IL-8 formation by 80–95% (P<0.001). POVPC (10–25 μM) also activated JNK by (3–6 fold) in HAEC. Reduction of POVPC to its corresponding alcohol, 1-palmitoyl-2-(5-hydroxyvaleroyl)- sn -glycero-3-phosphocholine (PHVPC) inhibited JNK activation by 74 ± 14 % (P<0.001). Pharmacological inhibition of JNK, inhibited the aldehyde-induced induction of ATF3 and ATF4 proteins by 70–90 % (P<0.001) but not the phosphorylation of eIF2α, and PBA inhibited the POVPC-induced JNK activation by 85 ± 11 % (P<0.001). These data suggest that lipoprotein oxidation products activate endothelial cells in part by inducing ER-stress and their inflammatory signaling could be attenuated by chemical chaperones of protein folding.


2001 ◽  
Vol 153 (5) ◽  
pp. 1011-1022 ◽  
Author(s):  
Isabel Novoa ◽  
Huiqing Zeng ◽  
Heather P. Harding ◽  
David Ron

Phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α) on serine 51 integrates general translation repression with activation of stress-inducible genes such as ATF4, CHOP, and BiP in the unfolded protein response. We sought to identify new genes active in this phospho-eIF2α–dependent signaling pathway by screening a library of recombinant retroviruses for clones that inhibit the expression of a CHOP::GFP reporter. A retrovirus encoding the COOH terminus of growth arrest and DNA damage gene (GADD)34, also known as MYD116 (Fornace, A.J., D.W. Neibert, M.C. Hollander, J.D. Luethy, M. Papathanasiou, J. Fragoli, and N.J. Holbrook. 1989. Mol. Cell. Biol. 9:4196–4203; Lord K.A., B. Hoffman-Lieberman, and D.A. Lieberman. 1990. Nucleic Acid Res. 18:2823), was isolated and found to attenuate CHOP (also known as GADD153) activation by both protein malfolding in the endoplasmic reticulum, and amino acid deprivation. Despite normal activity of the cognate stress-inducible eIF2α kinases PERK (also known as PEK) and GCN2, phospho-eIF2α levels were markedly diminished in GADD34-overexpressing cells. GADD34 formed a complex with the catalytic subunit of protein phosphatase 1 (PP1c) that specifically promoted the dephosphorylation of eIF2α in vitro. Mutations that interfered with the interaction with PP1c prevented the dephosphorylation of eIF2α and blocked attenuation of CHOP by GADD34. Expression of GADD34 is stress dependent, and was absent in PERK−/− and GCN2−/− cells. These findings implicate GADD34-mediated dephosphorylation of eIF2α in a negative feedback loop that inhibits stress-induced gene expression, and that might promote recovery from translational inhibition in the unfolded protein response.


2019 ◽  
Vol 149 (11) ◽  
pp. 1904-1910 ◽  
Author(s):  
Yu He ◽  
Xiaoxiao Fan ◽  
Ning Liu ◽  
Qingqing Song ◽  
Jiao Kou ◽  
...  

ABSTRACT Background Dysfunction of the endoplasmic reticulum (ER) results in apoptosis, inflammation, and enhanced proteolysis in the small intestine of humans and animals. l-Glutamine (Gln) is required for intestinal mucosal homeostasis in piglets. However, a functional role of the ER in the enterocytes of weanling piglets and its contribution to intestinal mucosal integrity remain largely unknown. Objective This study was conducted to test the hypothesis that preweaning administration of Gln alleviates the activation of unfolded protein response (UPR) in the small intestine of weanling piglets. Methods Eighteen sow-reared piglets aged 7 d from 3 litters (6 piglets/litter) were assigned randomly into 1 of 3 treatment groups. Piglets were reared by sows until age 24 d, or were reared by sows and orally administered either l-alanine [1.84 g · kg body weight (BW)−1 · d−1] or Gln (1.52 g · kg BW−1 · d−1) twice daily between 7 and 21 d of age, and then weaned to a corn- and soybean meal-based diet. The small-intestinal samples were collected at 24 d of age for analyses of abundance of proteins related to ER stress and apoptosis, concentrations of inflammatory cytokines, and mRNA abundance for genes implicated in protein degradation. Results Compared with age-matched suckling piglets, weaning stress increased apoptosis and decreased cell proliferation in the jejunum. The abundance of proteins related to ER stress [binding immunoglobulin protein, activating transcription factor 6α, phosphorylated (p)-inositol-requiring kinase 1α, and p-eukaryotic initiation factor 2α] was elevated by 200% to 320%, and that of apoptotic proteins (CCAAT/enhancer-binding protein homologous protein, p-Jun-N-terminal kinase, caspase-12, cleaved caspase-3, and Bcl-2-associated X) was augmented by 100% to 350% in the jejunum of weanling piglets. The protein abundance for IL-1β, TNF-α, and IL-8 was increased by 100% to 230% in the jejunum of weanling piglets. These alterations in gene and protein expression were markedly abrogated by Gln supplementation. The mRNA concentration of F-Box protein 32 in the jejunum of weanling piglets was increased by 70%, compared with the control group, and was not affected by Gln supplementation. Conclusion Our results indicate that preweaning administration of Gln to nursing piglets alleviates the weaning-activated UPR.


2015 ◽  
Vol 35 (8) ◽  
pp. 1414-1432 ◽  
Author(s):  
Hema Adhikari ◽  
Nadia Vadaie ◽  
Jacky Chow ◽  
Lauren M. Caccamise ◽  
Colin A. Chavel ◽  
...  

Signaling mucins are evolutionarily conserved regulators of signal transduction pathways. The signaling mucin Msb2p regulates the Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in yeast. The cleavage and release of the glycosylated inhibitory domain of Msb2p is required for MAPK activation. We show here that proteolytic processing of Msb2p was induced by underglycosylation of its extracellular domain. Cleavage of underglycosylated Msb2p required the unfolded protein response (UPR), a quality control (QC) pathway that operates in the endoplasmic reticulum (ER). The UPR regulator Ire1p, which detects misfolded/underglycosylated proteins in the ER, controlled Msb2p cleavage by regulating transcriptional induction of Yps1p, the major protease that processes Msb2p. Accordingly, the UPR was required for differentiation to the filamentous cell type. Cleavage of Msb2p occurred in conditional trafficking mutants that trap secretory cargo in the endomembrane system. Processed Msb2p was delivered to the plasma membrane, and its turnover by the ubiquitin ligase Rsp5p and ESCRT attenuated the filamentous-growth pathway. We speculate that the QC pathways broadly regulate signaling glycoproteins and their cognate pathways by recognizing altered glycosylation patterns that can occur in response to extrinsic cues.


2010 ◽  
Vol 78 (5) ◽  
pp. 1259-1279 ◽  
Author(s):  
Ana Cristina Colabardini ◽  
Patrícia Alves de Castro ◽  
Paula Fagundes de Gouvêa ◽  
Marcela Savoldi ◽  
Iran Malavazi ◽  
...  

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 73 ◽  
Author(s):  
Ryan P Dalton

Background: Both olfactory sensory neurons (OSNs) and vomeronasal sensory neurons (VSNs) require the transcription factor Atf5 for maturation and survival. In OSNs, ATF5 translation is controlled by olfactory receptor (OR) expression-mediated activation of the PERK branch of the unfolded protein response. This study evaluated whether OSNs and VSNs share genetic requirements for ATF5 translation. Methods: ATF5 immunoreactivity was assayed in whole vomeronasal organs from a series of genetic mutant animals identified in studies of OR gene choice, OR feedback, and regulation and OSN development. Results: ATF5 expression in VSNs required the histone demethylase Lsd1, which has been previously reported to be required for OR expression. ATF5 expression also required PERK-mediated phosphorylation of the translation initiation factor eIF2a. Finally, unlike previous observations in OSNs, ATF5 was found to be widespread in the mature VNO and co-expressed with mature VSN markers. Conclusions: These data suggest that the initiation of ATF5 translation in VSNs and OSNs is under similar regulation, and that persistent/prolonged ATF5 translation in VSNs may serve VSN-specific gene regulatory programs. This study firmly establishes the unfolded protein response as a major controller of sensory neuronal maturation and diversification.


Sign in / Sign up

Export Citation Format

Share Document