Abstract MP70: Aldosterone And Inverse Salt Sensitivity Of Blood Pressure

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Peng Xu ◽  
John J Gildea ◽  
Mahabuba Akhter ◽  
Robert M Carey ◽  
Wei Yue ◽  
...  

Salt sensitivity affects approximately 20% of adults worldwide and has similar mortality and morbidity sequalae as hypertension. Research has focused on the harmful effects of a high salt diet but have not focused on the harmful effects of a low salt diet. Inverse salt sensitive (ISS) individuals require high salt intake in order to maintain a normal blood pressure. Aldosterone increases ENaC and sodium reabsorption via the mineralocorticoid receptor (MR). We previously reported that αENaC was significantly lower in ISS renal tubule cells isolated from urine (uRTC), while these cells showed higher ENaC like activities under trypsin stimulation. We hypothesized that aldosterone may act as a stimulus and play a role in ISS high blood pressure on a low salt diet (LSD). Plasma aldosterone was significantly increased on LSD in all salt study participants, and ISS individuals showed the highest aldosterone level (ISS HS 3.8±0.38, n=26; ISS LS 35±3.38, n=22; SR HS 4.34±0.18, n=180; SR LS 32.62±1.6, n=152; SS HS 4.65±0.35, n=43; SS LS 26.08±2.18, n=38; HS Vs LS, p<0.001, two-way ANOVA). Moreover, both aldosterone and plasma renin activity (PRA) were significantly lower in salt sensitive (SS) individuals on LSD (PRA LS: ISS 6.05±0.87, n=17; SR 5.94±0.36, n=108; SS 4.43±0.57, n=34; p<0.05, one-way ANOVA), indicating LSD was protective to SS individuals. Treatment of uRTCs with 1 μM aldosterone increased MR and αENaC expression in ISS but not in SR (salt resistant) cells (MR: SR VEH 12164±213; SR Aldosterone 12327±128; ISS VEH 12128±40 vs ISS Aldosterone 13506±128, n=3, p<0.001, two-way ANOVA; αENaC: SR VEH 5023±46; SR Aldosterone 4895±55; ISS VEH 4270±21 vs ISS Aldosterone 5013±113, n=3, p<0.001, two-way ANOVA). High salt treatment further decreased MR in ISS but not in SR cells (ISS: 142mM 11066±188 vs 192mM 10425±74; p<0.05, n=3 two-way ANOVA). These results are consistent with the hypothesis that ISS individuals retain excess Na + and exhibit decreased BP when compared to SR or SS individuals under high salt diet, but reabsorb more sodium and exhibit elevated blood pressure under low salt diet. Higher circulating aldosterone and ex-vivo urine derived renal cell aldosterone sensitivity under low salt conditions may be a novel diagnostic test to identify ISS individuals.

1996 ◽  
Vol 271 (1) ◽  
pp. R109-R114 ◽  
Author(s):  
S. W. John ◽  
A. T. Veress ◽  
U. Honrath ◽  
C. K. Chong ◽  
L. Peng ◽  
...  

Atrial natriuretic peptide (ANP)-gene knockout mice of three genotypes (+/+, +/-, and -/-) were maintained on a low-salt diet (0.008% NaCl). They were then fed either the same low-salt diet or a high-salt diet (8% NaCl) for 1 wk. No differences were found among genotypes in daily food and water intakes or in urinary volume and electrolyte excretions. Arterial blood pressures measured in anesthetized animals at the end of the dietary regimen were significantly and similarly increased in -/- compared with +/+ mice on each diet. Renal excretion of fluid and electrolytes was measured in anesthetized mice before and after acute blood volume expansion. No genotype differences were observed before volume expansion. After volume expansion the wild-type (+/+) mice had much greater saluretic responses than either the heterozygous (+/-) or the homozygous mutant (-/-) animals on the low-salt diet but not on the high-salt diet. We conclude that ANP lowers blood pressure in the absence of detected changes in renal function; ANP is not essential for normal salt balance, even on high-salt intake; and ANP is essential for the natriuretic response to acute blood volume expansion on a low-salt but not high-salt intake.


Hypertension ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 158-168
Author(s):  
Ailsa F. Ralph ◽  
Celine Grenier ◽  
Hannah M. Costello ◽  
Kevin Stewart ◽  
Jessica R. Ivy ◽  
...  

Global salt intake averages >8 g/person per day, over twice the limit advocated by the American Heart Association. Dietary salt excess leads to hypertension, and this partly mediates its poor health outcomes. In ≈30% of people, the hypertensive response to salt is exaggerated. This salt-sensitivity increases cardiovascular risk. Mechanistic cardiovascular research relies heavily on rodent models and the C57BL6/J mouse is the most widely used reference strain. We examined the effects of high salt intake on blood pressure, renal, and vascular function in the most commonly used and commercially available C57BL6/J mouse strain. Changing from control (0.3% Na + ) to high salt (3% Na + ) diet increased systolic blood pressure in male mice by ≈10 mm Hg within 4 days of dietary switch. This hypertensive response was maintained over the 3-week study period. Returning to control diet gradually reduced blood pressure back to baseline. High-salt diet caused a rapid and sustained downregulation in mRNA encoding renal NHE3 (sodium-hydrogen-exchanger 3) and EnaC (epithelial sodium channel), although we did not observe a suppression in aldosterone until ≈7 days. During the development of salt-sensitivity, the acute pressure natriuresis relationship was augmented and neutral sodium balance was maintained throughout. High-salt diet increased ex vivo sensitivity of the renal artery to phenylephrine and increased urinary excretion of adrenaline, but not noradrenaline. The acute blood pressure–depressor effect of hexamethonium, a ganglionic blocker, was enhanced by high salt. Salt-sensitivity in commercially sourced C57BL6/J mice is attributable to sympathetic overactivity, increased adrenaline, and enhanced vascular sensitivity to alpha-adrenoreceptor activation and not sodium retention or attenuation of the acute pressure natriuresis response.


2012 ◽  
Vol 13 (3) ◽  
pp. 353-359 ◽  
Author(s):  
MA Bayorh ◽  
A Rollins-Hairston ◽  
J Adiyiah ◽  
D Lyn ◽  
D Eatman

Introduction: The upregulation of cyclooxygenase (COX) expression by aldosterone (ALDO) or high salt diet intake is very interesting and complex in the light of what is known about the role of COX in renal function. Thus, in this study, we hypothesize that apocynin (APC) and/or eplerenone (EPL) inhibit ALDO/salt-induced kidney damage by preventing the production of prostaglandin E2 (PGE2). Methods: Dahl salt-sensitive rats on either a low-salt or high-salt diet were treated with ALDO (0.2 mg pellet) in the presence of EPL (100 mg/kg/day) or APC (1.5 mM). Indirect blood pressure, prostaglandins and ALDO levels and histological changes were measured. Results: Cyclooxygenase-2 (COX-2) levels were upregulated in the renal tubules and peritubular vessels after high-salt intake, and APC attenuated renal tubular COX-2 protein expression induced by ALDO. Plasma PGE2 levels were significantly reduced by ALDO in the rats fed a low-salt diet when compared to rats fed a high-salt diet. PGE2 was blocked by EPL but increased in the presence of APC. Conclusions: The beneficial effects of EPL may be associated with an inhibition of PGE2. The mechanism underlying the protective effects of EPL is clearly distinct from that of APC and suggests that these agents can have differential roles in cardiovascular disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eliane F. E. Wenstedt ◽  
Lisanne Beugelink ◽  
Esmee M. Schrooten ◽  
Emma Rademaker ◽  
Nienke M. G. Rorije ◽  
...  

AbstractThe retinal microcirculation is increasingly receiving credit as a relatively easily accessible microcirculatory bed that correlates closely with clinical cardiovascular outcomes. The effect of high salt (NaCl) intake on the retinal microcirculation is currently unknown. Therefore, we performed an exploratory randomized cross-over dietary intervention study in 18 healthy males. All subjects adhered to a two-week high-salt diet and low-salt diet, in randomized order, after which fundus photographs were taken and assessed using a semi-automated computer-assisted program (SIVA, version 4.0). Outcome parameters involved retinal venular and arteriolar tortuosity, vessel diameter, branching angle and fractal dimension. At baseline, participants had a mean (SD) age of 29.8 (4.4) years and blood pressure of 117 (9)/73 (5) mmHg. Overall, high-salt diet significantly increased venular tortuosity (12.2%, p = 0.001). Other retinal parameters were not significantly different between diets. Changes in arteriolar tortuosity correlated with changes in ambulatory systolic blood pressure (r = − 0.513; p = 0.04). In conclusion, high-salt diet increases retinal venular tortuosity, and salt-induced increases in ambulatory systolic blood pressure associate with decreases in retinal arteriolar tortuosity. Besides potential eye-specific consequences, both phenomena have previously been associated with hypertension and other cardiovascular risk factors, underlining the deleterious microcirculatory effects of high salt intake.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Nuno Pires ◽  
Bruno Igreja ◽  
Eduardo Moura ◽  
Maria João Bonifácio ◽  
Paula Serrão ◽  
...  

Loss of salt-inducible kinase 1 (SIK1) triggers an increase in blood pressure (BP) upon a chronic high-salt intake in mice (Circ Res 2015;116:642-52). Here, we address possible acute mechanisms that may relate to the observed high BP in mice lacking SIK1. SIK1 knockout ( sik1 -/- ) and wild-type ( sik1 +/+ ) littermate mice were challenged for seven days with a normal- (0.3% NaCl) or high-salt (8% NaCl) diet. Systolic BP (SBP) was significantly increased in sik1 -/- mice (137.0±17.2 mmHg) after seven days of high-salt intake, as compared to sik1 +/+ mice counterparts (120.6±4.5 mmHg). The renin-angiotensin system (RAS) and the sympathetic nervous system (SNS) were assayed in order to investigate the possible causes for the increase in SBP in sik1 -/- mice fed a high-salt diet. No differences in renin (normal-salt: 463.4±17.9, high-salt: 462.9±28.9 pg/ml) and angiotensin II (normal-salt: 45.8±10.0, high-salt: 39.0±8.5 pg/ml) serum levels were observed. The activity of dopamine β-hydroxylase (DβH), the enzyme that converts dopamine (DA) to norepinephrine (NE), was significantly increased in the adrenal glands of sik1 -/- mice fed a high-salt diet (356.7±32.8 nmol/mg protein) as compared to sik1 -/- mice on a normal-salt diet (184.4±14.4 nmol/mg protein). Similarly, urinary catecholamines (DA, NE, epinephrine) and L-DOPA were significantly increased (3- to 7-fold increase) in sik1 -/- mice fed a high-salt diet as compared to sik1 -/- mice on a normal-salt intake. Altogether, this data supports the view that sik1 -/- mice fed a high-salt diet develop SNS overactivity. Next, we addressed the question if reducing SNS activity in sik1 -/- mice fed a high-salt diet would ameliorate hypertension. For that purpose, the effect of etamicastat, a peripheral reversible DβH inhibitor, was evaluated on the development of high BP upon high-salt diet. Etamicastat treatment (50 mg/kg/day), started prior to high-salt feeding, completely prevented SBP increase in sik1 -/- mice fed a high-salt diet (116.8±4.7 mmHg). It is concluded that the SNS is involved in the development of salt-induced hypertension in sik1 -/- mice and that the DβH inhibitor etamicastat is able to reduce SNS overactivity and high BP in this mouse model of hypertension.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
John J Gildea ◽  
Staci A Keene ◽  
Dylan T Lahiff ◽  
Robert E Van Sciver ◽  
Cynthia D Schoeffel ◽  
...  

Salt-sensitivity of blood pressure is an inappropriate increase in blood pressure following high salt intake. Subjects in our clinical study were typed according to their salt-sensitivity status into 3 categories: High-Salt-Sensitive (HSS; ≥ 7 mmHg increase in mean arterial pressure (MAP) on a high salt diet of 300 mEq of sodium, 17% prevalence), Low-Salt-Sensitive (LSS:, who paradoxically showed a ≥ 7 mmHg increase in MAP on a low salt diet of 10 mEq of sodium, 11% prevalence), and Salt-Resistant (SR, individuals who showed no significant increase in blood pressure on either diet, 72% prevalence). We previously demonstrated that LSS subjects show increased recruitment of the natriuretic dopamine-1 receptor (D1R) to the plasma membrane following a salt stimulation as compared to HSS subjects. Stimulation of the D1R in RPTC with fenoldopam (dopaminergic agonist) results in recruitment of the natriuretic angiotensin type-2 receptor (AT2R) to the cell surface. We hypothesized that LSS individuals may also demonstrate an enhanced AT2R RPTC membrane recruitment compared to HSS individuals when challenged with fenoldopam. In order to gain access to fresh RPTC from each subject, we isolated exfoliated RPTC from randomly voided urine from SR, LSS, and HSS subjects from our clinical study. We measured three subjects from each category with a minimum of three voids for each subject. We counted individual cells as independent events using both the confocal microscope (n=245) and the flow cytometer (n=5344). We found an inverse correlation between AT2R recruitment and the degree of salt-sensitivity of blood pressure. Fenoldopam stimulated AT2R recruitment as measured by confocal microscopy (y = -0.0047x + 0.4966, R2 = 0.2488, P<0.0001) and flow cytometry (y =-0.057x + 1.5645, R2=0.2912, P=0.0185). Flow cytometry provided a more sensitive diagnostic for LSS than HSS subjects. AT2R recruitment was more predictive of LSS than HSS. AT2R recruitment may be used as a rapid method to test for LSS individuals who need to be identified and encouraged to increase their sodium intake in order to avoid paradoxical hypertension.


1998 ◽  
Vol 275 (2) ◽  
pp. R410-R417 ◽  
Author(s):  
Atsushi Sakima ◽  
Hiroshi Teruya ◽  
Masanobu Yamazato ◽  
Rijiko Matayoshi ◽  
Hiromi Muratani ◽  
...  

Systemic inhibition of nitric oxide synthase (NOS) evokes hypertension, which is enhanced by salt loading, partly via augmented sympathetic activity. We investigated whether inhibition of brain NOS elevates blood pressure (BP) in normotensive rats and, if so, whether the BP elevation is enhanced by salt loading. After a 2-wk low-salt (0.3%) diet, male Sprague-Dawley (SD) rats were divided into four groups. Groups 1 and 2 received a chronic intracerebroventricular infusion of 0.5 mg ⋅ kg−1 ⋅ day−1of N G-monomethyl-l-arginine (l-NMMA), and groups 3 and 4 were given artificial cerebrospinal fluid (aCSF). Groups 1 and 3 were placed on a high-salt (8%) diet, whereas groups 2 and 4 were on a low-salt diet. On day 9or 10, group 1 showed significantly higher mean arterial pressure (MAP) in a conscious unrestrained state (129 ± 3 mmHg vs. 114 ± 3, 113 ± 1, and 108 ± 3 mmHg in groups 2, 3, and 4, respectively, P < 0.05). On a high-salt diet, response of renal sympathetic nerve activity but not of BP to air-jet stress was significantly larger in rats givenl-NMMA than in rats given aCSF (29 ± 4% vs. 19 ± 3%, P < 0.05). When the intracerebroventricular infusions were continued for 3 wk, MAP was significantly higher in rats givenl-NMMA than in rats given aCSF irrespective of salt intake, although the difference was ∼7 mmHg. Thus chronic inhibition of NOS in the brain only slightly elevates BP in SD rats. Salt loading causes a more rapid rise in BP. The mechanisms of the BP elevation and its acceleration by salt loading remain to be elucidated.


2010 ◽  
Vol 298 (6) ◽  
pp. F1465-F1471 ◽  
Author(s):  
Deyin Lu ◽  
Yiling Fu ◽  
Arnaldo Lopez-Ruiz ◽  
Rui Zhang ◽  
Ramiro Juncos ◽  
...  

Neuronal nitric oxide synthase (nNOS), which is abundantly expressed in the macula densa cells, attenuates tubuloglomerular feedback (TGF). We hypothesize that splice variants of nNOS are expressed in the macula densa, and nNOS-β is a salt-sensitive isoform that modulates TGF. Sprague-Dawley rats received a low-, normal-, or high-salt diet for 10 days and levels of the nNOS-α, nNOS-β, and nNOS-γ were measured in the macula densa cells isolated with laser capture microdissection. Three splice variants of nNOS, α-, β-, and γ-mRNAs, were detected in the macula densa cells. After 10 days of high-salt intake, nNOS-α decreased markedly, whereas nNOS-β increased two- to threefold in the macula densa measured with real-time PCR and in the renal cortex measured with Western blot. NO production in the macula densa was measured in the perfused thick ascending limb with an intact macula densa plaque with a fluorescent dye DAF-FM. When the tubular perfusate was switched from 10 to 80 mM NaCl, a maneuver to induce TGF, NO production by the macula densa was increased by 38 ± 3% in normal-salt rats and 52 ± 6% ( P < 0.05) in the high-salt group. We found 1) macula densa cells express nNOS-α, nNOS-β, and nNOS-γ, 2) a high-salt diet enhances nNOS-β, and 3) TGF-induced NO generation from macula densa is enhanced in high-salt diet possibly from nNOS-β. In conclusion, we found that the splice variants of nNOS expressed in macula densa cells were α-, β-, and γ-isoforms and propose that enhanced level of nNOS-β during high-salt intake may contribute to macula densa NO production and help attenuate TGF.


2007 ◽  
Vol 113 (3) ◽  
pp. 141-148 ◽  
Author(s):  
Raymond R. Townsend ◽  
Shiv Kapoor ◽  
Christopher B. McFadden

The literature on salt intake and insulin sensitivity presents a mixed picture, as some studies have shown an increase, whereas others have shown a decrease, in insulin action as sodium intake is enhanced. In some cases, this may relate to the study of salt intake in patients with co-morbidities such as hypertension or diabetes. In the present study, we selected healthy normotensive lean volunteers who underwent a euglycaemic clamp following 6 days of a low-salt diet (20 mmol sodium daily) and, subsequently, 6 days of a high-salt diet (200 mmol sodium daily). Our results show an increase in insulin-mediated glucose disposal during euglycaemic clamp conditions that was significantly higher following the high-salt diet compared with the low-salt diet (7.41±0.41 compared with 6.11±0.40 mg·kg−1 of body weight·min−1 respectively; P=0.03). We measured calf blood flow before and during insulin infusion (no significant change after the two dietary salt interventions was detected) and plasma non-esterified fatty acids (also no significant differences were detected). We observed the expected increases in renin concentration and aldosterone activity in subjects on the low-salt diet, and also observed a significantly less increase in plasma noradrenaline concentration during euglycaemic insulin infusion following the high-salt compared with the low-salt diet. We propose that the 4–5-fold increase in serum aldosterone and the greater increase in plasma noradrenaline concentration following the low-salt intervention compared with the high-salt period may have contributed to the differences in insulin sensitivity following the adjustment in dietary sodium intake.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Irina Tasevska ◽  
Sofia Enhörning ◽  
Philippe Burri ◽  
Olle Melander

This study investigated if copeptin is affected by high salt intake and whether any salt-induced changes in copeptin are related to the degree of salt sensitivity. The study was performed on 20 men and 19 women. In addition to meals containing 50 mmol NaCl daily, capsules containing 100 mmol NaCl and corresponding placebo capsules were administered during 4 weeks each, in random order. Measurements of 24 h blood pressure, body weight, 24 h urinary volume, and fasting plasma copeptin were performed at high and low salt consumption. Copeptin increased after a high compared to low dietary salt consumption in all subjects 3,59 ± 2,28 versus 3,12 ± 1,95 (P= 0,02). Copeptin correlated inversely with urinary volume, at both low (r= −0,42;P= 0,001) and high (r= −0,60;P< 0,001) salt consumption, as well as with the change in body weight (r= −0,53;P< 0,001). Systolic salt sensitivity was inversely correlated with salt-induced changes of copeptin, only in females (r= −0,58;P= 0,017). As suppression of copeptin on high versus low salt intake was associated with systolic salt sensitivity in women, our data suggest that high fluid intake and fluid retention may contribute to salt sensitivity.


Sign in / Sign up

Export Citation Format

Share Document