Dynamics and contribution of mechanisms mediating renal blood flow autoregulation

2003 ◽  
Vol 285 (3) ◽  
pp. R619-R631 ◽  
Author(s):  
Armin Just ◽  
William J. Arendshorst

We investigated dynamic characteristics of renal blood flow (RBF) autoregulation and relative contribution of underlying mechanisms within the autoregulatory pressure range in rats. Renal arterial pressure (RAP) was reduced by suprarenal aortic constriction for 60 s and then rapidly released. Changes in renal vascular resistance (RVR) were assessed following rapid step reduction and RAP rise. In response to rise, RVR initially fell 5-10% and subsequently increased ∼20%, reflecting 93% autoregulatory efficiency (AE). Within the initial 7-9 s, RVR rose to 55% of total response providing 37% AE, reaching maximum speed at 2.2 s. A secondary RVR increase began at 7-9 s and reached maximum speed at 10-15 s. Response times suggest that the initial RVR reflects the myogenic response and the secondary tubuloglomerular feedback (TGF). During TGF inhibition by furosemide, AE was 64%. The initial RVR rise was accelerated and enhanced, providing 49% AE, but it represented only 88% of total. The remaining 12% indicates a third regulatory component. The latter contributed up to 50% when the RAP increase began below the autoregulatory range. TGF augmentation by acetazolamide affected neither AE nor relative myogenic contribution. Diltiazem infusion markedly inhibited AE and the primary and secondary RVR increases but left a slow component. In response to RAP reduction, initial vasodilation constituted 73% of total response but was not affected by furosemide. The third component's contribution was 9%. Therefore, RBF autoregulation is primarily due to myogenic response and TGF, contributing 55% and 33-45% in response to RAP rise and 73% and 18-27% to RAP reduction. The data imply interaction between TGF and myogenic response affecting strength and speed of myogenic response during RAP rises. The data suggest a third regulatory system contributing <12% normally but up to 50% at low RAP; its nature awaits further investigation.

1991 ◽  
Vol 260 (1) ◽  
pp. F53-F68 ◽  
Author(s):  
N. H. Holstein-Rathlou ◽  
A. J. Wagner ◽  
D. J. Marsh

To decide whether tubuloglomerular feedback (TGF) can account for renal autoregulation, we tested predictions of a TGF simulation. Broad-band and single-frequency perturbations were applied to arterial pressure; arterial blood pressure, renal blood flow and proximal tubule pressure were measured. Data were analyzed by linear systems analysis. Broad-band forcings of arterial pressure were also applied to the model to compare experimental results with simulations. With arterial pressure as the input and tubular pressure, renal blood flow, or renal vascular resistance as outputs, the model correctly predicted gain and phase only in the low-frequency range. Experimental results revealed a second component of vascular control active at 100-150 mHz that was not predicted by the simulation. Forcings at single frequencies showed that the system behaves linearly except in the band of 33-50 mHz in which, in addition, there are autonomous oscillations in TGF. Higher amplitude forcings in this band were attenuated by autoregulatory mechanisms, but low-amplitude forcings entrained the autonomous oscillations and provoked amplified oscillations in blood flow, showing an effect of TGF on whole kidney blood flow. We conclude that two components can be detected in the dynamic regulation of renal blood flow, i.e., a slow component that represents TGF and a faster component that most likely represents an intrinsic vascular myogenic mechanism.


1999 ◽  
Vol 276 (3) ◽  
pp. F442-F449 ◽  
Author(s):  
Armin Just ◽  
Heimo Ehmke ◽  
Uwe Wittmann ◽  
Hartmut R. Kirchheim

The aim of this study was to investigate the influence of the mean level and phasic modulation of NO on the dynamic autoregulation of renal blood flow (RBF). Transfer functions were calculated from spontaneous fluctuations of RBF and arterial pressure (AP) in conscious resting dogs for 2 h under control conditions, after NO synthase (NOS) inhibition [ N G-nitro-l-arginine methyl ester hydrochloride (l-NAME)] and afterl-NAME followed by a continuous infusion of an NO donor [ S-nitroso- N-acetyl-dl-penicillamine (SNAP)]. After l-NAME ( n = 7) AP was elevated, heart rate (HR) and RBF were reduced. The gain of the transfer function above 0.08 Hz was increased, compatible with enhanced resonance of the myogenic response. A peak of high gain around 0.03 Hz, reflecting oscillations of the tubuloglomerular feedback (TGF), was not affected. The gain below 0.01 Hz, was elevated, but still less than 0 dB, indicating diminished but not abolished autoregulation. Afterl-NAME and SNAP ( n = 5), mean AP and RBF were not changed, but HR was slightly elevated. The gain above 0.08 Hz and the peak of high gain at 0.03 Hz were not affected. The gain below 0.01 Hz was elevated, but smaller than 0 dB. It is concluded that NO may help to prevent resonance of the myogenic response depending on the mean level of NO. The feedback oscillations of the TGF are not affected by NO. NO contributes to the autoregulation below 0.01 Hz due to phasic modulation independent of its mean level.


2003 ◽  
Vol 285 (4) ◽  
pp. F758-F764 ◽  
Author(s):  
T. Wronski ◽  
E. Seeliger ◽  
P. B. Persson ◽  
C. Forner ◽  
C. Fichtner ◽  
...  

Response of renal vasculature to changes in renal perfusion pressure (RPP) involves mechanisms with different frequency characteristics. Autoregulation of renal blood flow (RBF) is mediated by the rapid myogenic response, by the slower tubuloglomerular feedback (TGF) mechanism, and, possibly, by an even slower third mechanism. To evaluate the individual contribution of these mechanisms to RBF autoregulation, we analyzed the response of RBF to a step increase in RPP. In anesthetized rats, the suprarenal aorta was occluded for 30 s, and then the occlusion was released to induce a step increase in RPP. Three dampened oscillations were observed; their oscillation periods ranged from 9.5 to 13 s, from 34.2 to 38.6 s, and from 100.5 to 132.2 s, respectively. The two faster oscillations correspond with previously reported data on the myogenic mechanism and the TGF. In accordance, after furosemide, the amplitude of the intermediate oscillation was significantly reduced. Inhibition of nitric oxide synthesis by Nω-nitro-l-arginine methyl ester significantly increased the amplitude of the 10-s oscillation. It is concluded that the parameters of the dampened oscillations induced by the step increase in RPP reflect properties of autoregulatory mechanisms. The oscillation period characterizes the individual mechanism, the dampening is a measure for the stability of the regulation, and the square of the amplitudes characterizes the power of the respective mechanism. In addition to the myogenic response and the TGF, a third rather slow mechanism of RBF autoregulation exists.


Hypertension ◽  
2020 ◽  
Vol 75 (2) ◽  
pp. 405-412 ◽  
Author(s):  
Jin Wei ◽  
Jinxiu Zhu ◽  
Jie Zhang ◽  
Shan Jiang ◽  
Larry Qu ◽  
...  

Impaired renal autoregulation permits more transmission of disturbance in systemic blood pressure, which initiates barotrauma in intrarenal microvasculatures such as glomerular and tubulointerstitial capillaries, contributing to the development of kidney damage and deterioration in renal function, especially under the conditions with high blood pressure. Although it has been postulated that autoregulatory efficiency is attenuated in the aging kidney, direct evidence remains lacking. In the present study, we measured the autoregulation of renal blood flow, myogenic response of afferent arteriole (Af-Art), tubuloglomerular feedback in vivo with micropuncture, as well as tubuloglomerular feedback in vitro in isolated perfused juxtaglomerular apparatus in young and aged C57BL/6 mice. We found that renal blood flow was not significantly changed in response to a defined elevation of renal arterial pressure in young mice but significantly increased in aged mice. Additionally, myogenic response of Af-Art measured by microperfusion with a stepwise increase in perfusion pressure was significantly blunted in the aging kidney, which is associated with the attenuation of intraluminal pressure-induced intracellular calcium increases, as well as the reduced expression of integrin α5 (Itga5) in Af-Art. Moreover, both tubuloglomerular feedback in vivo and in vitro were nearly inactive in the aging kidney, which is associated with the significantly reduced expression of adenosine A1 receptor (A1AR) and suppressed vasoconstrictor response to adenosine in Af-Art. In conclusion, this study demonstrates that aging impairs renal autoregulation with blunted myogenic response and inhibited tubuloglomerular feedback response. The underlying mechanisms involve the downregulations of integrin α5 and A1AR in the Af-Art.


2001 ◽  
Vol 280 (6) ◽  
pp. F1062-F1071 ◽  
Author(s):  
Armin Just ◽  
Heimo Ehmke ◽  
Lira Toktomambetova ◽  
Hartmut R. Kirchheim

The time course of the autoregulatory response of renal blood flow (RBF) to a step increase in renal arterial pressure (RAP) was studied in conscious dogs. After RAP was reduced to 50 mmHg for 60 s, renal vascular resistance (RVR) decreased by 50%. When RAP was suddenly increased again, RVR returned to baseline with a characteristic time course (control; n = 15): within the first 10 s, it rose rapidly to 70% of baseline ( response 1), thus already comprising 40% of the total RVR response. Thereafter, it increased at a much slower rate until it started to rise rapidly again at 20–30 s after the pressure step ( response 2). After passing an overshoot of 117% at 43 s, RVR returned to baseline values. Similar responses were observed after RAP reduction for 5 min or after complete occlusions for 60 s. When tubuloglomerular feedback (TGF) was inhibited by furosemide (40 mg iv, n = 12), response 1 was enhanced, providing 60% of the total response, whereas response 2 was completely abolished. Instead, RVR slowly rose to reach the baseline at 60 s ( response 3). The same pattern was observed when furosemide was given at a much higher dose (>600 mg iv; n = 6) or in combination with clamping of the plasma levels of nitric oxide ( n = 6). In contrast to RVR, vascular resistance in the external iliac artery after a 60-s complete occlusion started to rise with a delay of 4 s and returned to baseline within 30 s. It is concluded that, in addition to the myogenic response and the TGF, a third regulatory mechanism significantly contributes to RBF autoregulation, independently of nitric oxide. The three mechanisms contribute about equally to resting RVR. The myogenic response is faster in the kidney than in the hindlimb.


1994 ◽  
Vol 72 (10) ◽  
pp. 1132-1137 ◽  
Author(s):  
Raouf E. Naguib ◽  
Chantal Contant ◽  
W. A. Cupples

Autoregulation of renal blood flow is highly efficient and is mediated partly by tubuloglomerular feedback (TGF), which couples regulation of blood flow to that of sodium excretion. Atrial natriuretic factor (ANF) dilates preglomerular resistance vessels, in which autoregulation occurs, and has been reported to inhibit TGF. This study addressed potential actions of ANF on the slow, TGF-mediated, component of autoregulation. Renal blood flow was measured by an electromagnetic flow probe in Sprague – Dawley rats anesthetized by halothane or isoflurane while renal perfusion pressure was manipulated by a servo-controlled clamp placed on the aorta between the renal arteries. Progressive reduction of perfusion pressure to 60 mmHg (1 mmHg = 133.3 Pa) induced resetting of autoregulation to operate at the reduced pressure and to defend lower renal blood flow. Infusion of ANF at a dose shown to reliably increase sodium excretion did not affect autoregulation or its resetting. Because resetting is angiotensin II dependent, the converting enzyme inhibitor Enalaprilat® was used to provide angiotensin II blockade. As expected, autoregulation did not reset to operate at reduced perfusion pressure. Again ANF was without effect. In a third experiment, relaxation of resistance was assessed in response to repeated steps of perfusion pressure between 65 and 75 mmHg. Time constants of constriction and dilatation were recovered by fitting to a single exponential before and during ANF infusion. Time constants ranged from 0.045 to 0.055 Hz, were consistent with operation of TGF, were not different for constriction or dilatation, and were unaltered by ANF; nor did ANF affect the magnitude of constriction or dilatation. Autoregulation compensated for ≈ 87% of the increase and ≈ 79% of the decrease in driving pressure during control. During ANF infusion it compensated for ≈ 98% of the increase and ≈ 82% of the decrease. The results indicate that, although ANF and angiotensin II act on the same resistance vessels, ANF does not attenuate angiotensin II dependent resetting of renal autoregulation; nor does ANF inhibit the slow component of renal autoregulation.Key words: resistance, tubuloglomerular feedback, time constant.


2007 ◽  
Vol 292 (1) ◽  
pp. R1-R17 ◽  
Author(s):  
Armin Just

Autoregulation of renal blood flow (RBF) is caused by the myogenic response (MR), tubuloglomerular feedback (TGF), and a third regulatory mechanism that is independent of TGF but slower than MR. The underlying cause of the third regulatory mechanism remains unclear; possibilities include ATP, ANG II, or a slow component of MR. Other mechanisms, which, however, exert their action through modulation of MR and TGF are pressure-dependent change of proximal tubular reabsorption, resetting of RBF and TGF, as well as modulating influences of ANG II and nitric oxide (NO). MR requires < 10 s for completion in the kidney and normally follows first-order kinetics without rate-sensitive components. TGF takes 30–60 s and shows spontaneous oscillations at 0.025–0.033 Hz. The third regulatory component requires 30–60 s; changes in proximal tubular reabsorption develop over 5 min and more slowly for up to 30 min, while RBF and TGF resetting stretch out over 20–60 min. Due to these kinetic differences, the relative contribution of the autoregulatory mechanisms determines the amount and spectrum of pressure fluctuations reaching glomerular and postglomerular capillaries and thereby potentially impinge on filtration, reabsorption, medullary perfusion, and hypertensive renal damage. Under resting conditions, MR contributes ∼50% to overall RBF autoregulation, TGF 35–50%, and the third mechanism < 15%. NO attenuates the strength, speed, and contribution of MR, whereas ANG II does not modify the balance of the autoregulatory mechanisms.


1995 ◽  
Vol 269 (4) ◽  
pp. F581-F593 ◽  
Author(s):  
R. Feldberg ◽  
M. Colding-Jorgensen ◽  
N. H. Holstein-Rathlou

The present study investigates the interaction between the tubuloglomerular feedback (TGF) response and the myogenic mechanism by use of a mathematical model. The two control mechanisms are implemented in a spatially distributed model of the rat renal juxtamedullary afferent arteriole. The model of the afferent arteriole is based on in vivo measurements of the stress-strain relation in muscle strips. Analysis of experimental data shows that the myogenic response can be modeled by a linear relation between the transmural pressure and the level of activation of the vascular smooth muscle cells. The contribution of TGF to smooth muscle activity is assumed to be a linear function of the glomerular capillary pressure. The results show that the myogenic response plays an important role in renal blood flow autoregulation. Without a myogenic response, mechanisms such as TGF that are localized in the distal segments of the microvasculature would not be able to achieve autoregulation because of passive, pressure-mediated effects in the upstream vascular segments. In addition, it is shown that a strong myogenic response may lead to both propagation and enhancement of vascular effects mediated through mechanisms located in the distal part of the afferent arteriole. An ascending myogenic response could enhance the regulatory efficiency of the TGF mechanism by increasing the open-loop gain of the system. However, such a synergistic interaction will only be observed when the two mechanisms operate on more or less separate segments of the afferent arteriole. In the case where they operate on common segments of the arteriole, the outcome of the interaction may well be antagonistic.


1998 ◽  
Vol 506 (1) ◽  
pp. 275-290 ◽  
Author(s):  
Armin Just ◽  
Uwe Wittmann ◽  
Heimo Ehmke ◽  
Hartmut R. Kirchheim

Sign in / Sign up

Export Citation Format

Share Document