Early responses to hemorrhage in the conscious rat: effects of corticosterone

1982 ◽  
Vol 243 (3) ◽  
pp. R416-R423 ◽  
Author(s):  
R. N. Barton ◽  
B. J. Passingham

There is evidence for a physiological role of the adrenal cortex in the early responses to limb ischemia in the rat. Trilostane, which inhibits steroid production and prevents the usual rise in corticosterone concentration, impairs compensatory fluid movement during the 3 h after removal of bilateral hindlimb tourniquets and truncates the accompanying hyperglycemia. We have now studied whether altering the corticosterone concentration has similar effects over a 3-h period after a 35% hemorrhage in the conscious rat. After hemorrhage there was only a small rise in plasma glucose concentration, which was unaffected by inhibition of the adrenocortical response with trilostane or its prolongation with adrenocorticotrophic hormone. However, if hindlimb tourniquets were applied 4 h beforehand, the hyperglycemia after hemorrhage was as large as after tourniquet removal and was similarly curtailed by trilostane. Compensatory fluid movement, in contrast, was unaffected by any of the alterations in corticosterone concentration, with or without tourniquets. Thus the method of producing fluid loss is critical in determining whether glucocorticoids play a role in compensation but not in maintaining hyperglycemia after injury.

2012 ◽  
Vol 30 (1) ◽  
pp. 100
Author(s):  
Wei HUANG ◽  
Shi-Bao ZHANG ◽  
Kun-Fang CAO

2018 ◽  
Vol 25 (23) ◽  
pp. 2627-2636 ◽  
Author(s):  
Vincenzo Calderone ◽  
Alma Martelli ◽  
Eugenia Piragine ◽  
Valentina Citi ◽  
Lara Testai ◽  
...  

In the last four decades, the several classes of diuretics, currently available for clinical use, have been the first line option for the therapy of widespread cardiovascular and non-cardiovascular diseases. Diuretic drugs generally exhibit an overall favourable risk/benefit balance. However, they are not devoid of side effects. In particular, all the classes of diuretics cause alteration of potassium homeostasis. <p> In recent years, understanding of the physiological role of the renal outer medullary potassium (ROMK) channels, has shown an intriguing pharmacological target for developing an innovative class of diuretic agents: the ROMK inhibitors. This novel class is expected to promote diuretic activity comparable to (or even higher than) that provided by the most effective drugs used in clinics (such as furosemide), with limited effects on potassium homeostasis. <p> In this review, the physio-pharmacological roles of ROMK channels in the renal function are reported, along with the most representative molecules which have been currently developed as ROMK inhibitors.


1981 ◽  
Vol 241 (1) ◽  
pp. R21-R24 ◽  
Author(s):  
R. G. Doell ◽  
M. F. Dallman ◽  
R. B. Clayton ◽  
G. D. Gray ◽  
S. Levine

These experiments were undertaken to investigate the mechanism whereby a precipitous drop in plasma corticosterone concentration is brought about following drinking in rats on a restricted water schedule. No alteration in adrenocorticotrophic hormone (ACTH) output was found, nor was catabolism of corticosterone sufficient to account for the drop. It is concluded that corticosterone level is controlled under these conditions by a mechanism independent of ACTH concentration.


2021 ◽  
Vol 22 (11) ◽  
pp. 5575
Author(s):  
Agnieszka Markiewicz ◽  
Dawid Sigorski ◽  
Mateusz Markiewicz ◽  
Agnieszka Owczarczyk-Saczonek ◽  
Waldemar Placek

Caspase-14 is a unique member of the caspase family—a family of molecules participating in apoptosis. However, it does not affect this process but regulates another form of programmed cell death—cornification, which is characteristic of the epidermis. Therefore, it plays a crucial role in the formation of the skin barrier. The cell death cycle has been a subject of interest for researchers for decades, so a lot of research has been done to expand the understanding of caspase-14, its role in cell homeostasis and processes affecting its expression and activation. Conversely, it is also an interesting target for clinical researchers searching for its role in the physiology of healthy individuals and its pathophysiology in particular diseases. A summary was done in 2008 by Denecker et al., concentrating mostly on the biotechnological aspects of the molecule and its physiological role. However, a lot of new data have been reported, and some more practical and clinical research has been conducted since then. The majority of studies tackled the issue of clinical data presenting the role of caspase in the etiopathology of many diseases such as retinal dysfunctions, multiple malignancies, and skin conditions. This review summarizes the available knowledge on the molecular and, more interestingly, the clinical aspects of caspase-14. It also presents how theoretical science may pave the way for medical research. Methods: The authors analyzed publications available on PubMed until 21 March 2021, using the search term “caspase 14”.


Hand Clinics ◽  
1998 ◽  
Vol 14 (3) ◽  
pp. 457-465 ◽  
Author(s):  
LT Eric P. Hofmeister ◽  
LCDR Alexander Y. Shin

Sign in / Sign up

Export Citation Format

Share Document