Effects of vasoactive intestinal peptide on canine prostatic contraction and secretion

1984 ◽  
Vol 247 (4) ◽  
pp. R701-R708 ◽  
Author(s):  
E. R. Smith ◽  
T. B. Miller ◽  
M. M. Wilson ◽  
M. C. Appel

Vasoactive intestinal peptide (VIP)-like immunoreactivity was found in intrinsic autonomic ganglion cells and nerve fibers located at the surface and within the canine prostate. In anesthetized dogs, porcine VIP (100–3,000 ng/kg iv) decreased arterial pressure and increased heart rate but did not result in the release of fluid from the prostate, indicating that VIP neither contracted glandular smooth muscle to expel fluid nor provoked secretion. Intravenous infusions of VIP at 10, 50, 100, and/or 200 ng X kg-1 X min-1 produced dose-related decreases in arterial pressure, increases in heart rate, and potentiation of the secretory response to the intravenous administration of pilocarpine and to electrical stimulation of the hypogastric nerves at 2 but not at 20 Hz. VIP at 1 microgram/ml neither contracted isolated strips of prostate nor modified their contraction by norepinephrine. It is unlikely that VIP mediates hypogastric nerve-induced prostatic contraction or secretion in the dog, but VIP may serve as a neuromodulator of nerve-induced secretion.

2020 ◽  
Vol 43 (10) ◽  
pp. 1057-1067 ◽  
Author(s):  
Gean Domingos-Souza ◽  
Fernanda Machado Santos-Almeida ◽  
César Arruda Meschiari ◽  
Nathanne S. Ferreira ◽  
Camila A. Pereira ◽  
...  

1996 ◽  
Vol 271 (6) ◽  
pp. R1481-R1488
Author(s):  
K. Kihara ◽  
H. Kakizaki ◽  
W. C. de Groat

Reorganization of autonomic efferent pathways to the rat vas deferens was noted after chronic (30 days) sympathetic decentralization produced by hypogastric nerve (HGN) transection. In normal rats, electrical stimulation of the HGN elicited an increase in vasal pressure (VP) bilaterally, whereas pelvic nerve (PN) stimulation did not alter VP. However, after unilateral HGN transection, stimulation of the PN on the transected side but not on the normal side increased VP. The decentralized vas exhibited larger VP responses to stimulation of the contralateral HGN in comparison with the normal vas. After bilateral HGN transection, PN-induced VP responses were elicited at lower stimulus intensities than in rats with unilateral transections. PN-induced VP responses were blocked by hexamethonium and prazosin but were not altered by atropine. Distension of the vas lumen occurred after decentralization. PN-induced VP responses were not detectable in extremely distended vas. These data indicate that, after degeneration of sympathetic preganglionic axons, decentralized adrenergic ganglion cells are reinnervated by parasympathetic or sympathetic preganglionic pathways and that the reinnervation influences vasal function.


1987 ◽  
Vol 253 (1) ◽  
pp. H91-H99 ◽  
Author(s):  
E. M. Hasser ◽  
D. O. Nelson ◽  
J. R. Haywood ◽  
V. S. Bishop

This study investigated the effect of chemical and electrical stimulation of the area postrema on renal sympathetic nerve activity (RSNA), arterial pressure, and heart rate in urethan-anesthetized rabbits. Electrical stimulation of the area postrema at 2, 5, 10, 20, 40, and 80 Hz using constant currents of 7.5, 15, and 30 microA (pulse duration = 0.3 ms, train duration = 5 s) produced progressive decreases in RSNA and heart rate, with no consistent change in arterial pressure. To control for electrical activation of fibers of passage in or near the area postrema, L-glutamate was injected into the area postrema using glass micropipettes. Micropressure injection of L-glutamate (10 mM) in volumes of 5-10 nl produced rapid decreases in RSNA averaging 27 +/- 5% (P less than 0.05) accompanied by a small bradycardia. The effects of electrical stimulation of the area postrema, but not the adjacent nucleus tractus solitarius, were totally eliminated by micropressure injection of kainic acid (40 ng in 40 nl) into the area postrema. During continuous electrical stimulation of the area postrema using parameters that produced small decrements in RSNA and heart rate, the slope of the line relating baroreflex inhibition of RSNA to increases in arterial pressure during graded infusions of phenylephrine was significantly enhanced (-6.77 +/- 1.30 vs. -3.81 +/- 0.66% RSNA/mmHg). These data are consistent with the hypothesis that activation of neurons in the area postrema results in an inhibition of RSNA. Furthermore, stimulation of the area postrema augments baroreflex inhibition of RSNA during increases in arterial pressure with phenylephrine.


1988 ◽  
Vol 255 (6) ◽  
pp. H1349-H1358 ◽  
Author(s):  
J. S. Hade ◽  
S. W. Mifflin ◽  
T. S. Donta ◽  
R. B. Felder

We examined the role of the parabrachial neuronal mass in mediating the pressor response to electrical stimulation of parabrachial nucleus (PBN). In anesthetized cats, 100 mM L-glutamate (L-glu) was microinjected into PBN at sites from which low-intensity (25 microA) electrical stimulation evoked a pressor response. Arterial pressure, heart rate, and, in some animals, renal or phrenic nerve activity were monitored. Microinjection of L-glu caused an increase in arterial pressure that was comparable with that elicited by low-intensity electrical stimulation. Electrical stimulation, and to a lesser extent L-glu microinjection, caused an increase in renal sympathetic nerve activity but no significant change in heart rate. No consistent change in central respiratory drive accompanied the pressor response. These responses were preserved after baroreceptor denervation but were blocked by intravenous administration of the alpha-adrenergic receptor antagonist phentolamine. Microinjection into PBN of 2 mM kainic acid, which selectively depolarizes neurons but spares axons, reversibly blocked the arterial pressure and renal nerve responses to the 25-microA electrical stimulus. We conclude that the pressor response elicited by electrical stimulation of PBN in the anesthetized cat is mediated by cellular elements in PBN, not by fibers of passage. Because phentolamine completely blocked the pressor response, we suggest that it is subserved peripherally by sympathetic alpha-adrenergic rather than humoral (e.g., angiotensin, vasopressin) vasoconstrictor mechanisms. Finally, our data indirectly suggest that PBN stimulation may differentially engage efferent components of the sympathetic nervous system to elicit the pressor response.


1983 ◽  
Vol 244 (5) ◽  
pp. H687-H694 ◽  
Author(s):  
A. Del Bo ◽  
A. F. Sved ◽  
D. J. Reis

Electrical stimulation of the cerebellar fastigial nucleus (FN) in anesthetized, paralyzed, and artificially ventilated rat with a 10-s stimulus train (50 Hz) resulted in a stimulus-locked elevation in arterial pressure (AP) and heart rate, the fastigial pressor response (FPR). Blockade of autonomic effectors by chemosympathectomy (produced by treatment with 6-hydroxydopamine) combined with adrenalectomy, or by spinal cord transection at C1, abolished the FPR but unmasked an elevation of AP with longer latency (10-12 s) and duration (2-4 min), termed the residual FPR. The residual FPR was 1) abolished by midbrain transection, 2) blocked by administration of a specific antagonist of the vasopressor response to arginine vasopressin (AVP) [1,d(CH2)5Tyr(Me)AVP], and 3) was absent in homozygous and attenuated in heterozygous rats of the Brattleboro strain. FN stimulation elevated AVP threefold (from 13 +/- 1 to 38 +/- 8 pg/ml, P less than 0.02; n = 6) in intact rats and sevenfold in rats with combined chemosympathectomy and adrenalectomy (from 14 +/- 1 to 96 +/- 11 pg/ml, P less than 0.001; n = 9). Stimulation of the cerebellar FN can release AVP. In the absence of sympathoadrenal effectors, the amount so released is enhanced and capable of elevating AP.


1985 ◽  
Vol 249 (1) ◽  
pp. G73-G84 ◽  
Author(s):  
F. D. Pagani ◽  
W. P. Norman ◽  
D. K. Kasbekar ◽  
R. A. Gillis

The purpose of our study was to determine the localization of sites within the dorsal motor nucleus of the vagus (DMV) of the cat that when stimulated would increase gastric motility. To do this, two types of experiments were performed. First, the retrograde tracer fast blue was injected into the antrum and pylorus, and labeled neurons in the DMV were identified. Second, electrical stimulation was performed in areas of the DMV labeled with fast blue as well as in nearby areas with no labeling while monitoring gastric motility, arterial pressure, and heart rate. Results from the first type of studies revealed that peak labeling in the DMV occurred between 0.56 and 1.56 mm rostral to obex. Electrical stimulation in this area using 100 microA, 0.2 ms duration pulses, and 50 Hz resulted in increases in antral and pyloric contractions in 20 animals. The magnitude of pyloric and antral responses elicited by stimulation of the DMV generally correlated to the number of cell bodies labeled with fast blue within the DMV. No changes in arterial pressure occurred, and only a slight (-4%) decrease in heart rate was observed. Maximal increases in motility occurred with 20 Hz (antrum) or 100 Hz (pylorus). These increases in motility were maintained even at 200- and 400-Hz stimulation. Ipsilateral vagotomy or pretreatment with propantheline bromide prevented the increases in gastric motility produced by electrical stimulation of the DMV. Electrical stimulation of more rostral sites in the DMV, the medial nucleus of the solitary tract (NTS), and an area within 1.0 mm medial to the DMV resulted in attenuated or no motility responses. Stimulation of the medial nucleus of the NTS did result in pronounced slowing in heart rate (-61 +/- 21 beats/min). These results suggest that there is a localization of a “stomach area” within the DMV and that electrical stimulation of this area results in gastric motility responses that are mediated by vagal fibers projecting directly to the stomach. In addition, electrical stimulation of the DMV results in selective effects on the gastrointestinal tract in that no pronounced changes in heart rate and arterial pressure occur.


2012 ◽  
Vol 107 (10) ◽  
pp. 2742-2755 ◽  
Author(s):  
Max Eickenscheidt ◽  
Martin Jenkner ◽  
Roland Thewes ◽  
Peter Fromherz ◽  
Günther Zeck

Electrical stimulation of retinal neurons offers the possibility of partial restoration of visual function. Challenges in neuroprosthetic applications are the long-term stability of the metal-based devices and the physiological activation of retinal circuitry. In this study, we demonstrate electrical stimulation of different classes of retinal neurons with a multicapacitor array. The array—insulated by an inert oxide—allows for safe stimulation with monophasic anodal or cathodal current pulses of low amplitude. Ex vivo rabbit retinas were interfaced in either epiretinal or subretinal configuration to the multicapacitor array. The evoked activity was recorded from ganglion cells that respond to light increments by an extracellular tungsten electrode. First, a monophasic epiretinal cathodal or a subretinal anodal current pulse evokes a complex burst of action potentials in ganglion cells. The first action potential occurs within 1 ms and is attributed to direct stimulation. Within the next milliseconds additional spikes are evoked through bipolar cell or photoreceptor depolarization, as confirmed by pharmacological blockers. Second, monophasic epiretinal anodal or subretinal cathodal currents elicit spikes in ganglion cells by hyperpolarization of photoreceptor terminals. These stimuli mimic the photoreceptor response to light increments. Third, the stimulation symmetry between current polarities (anodal/cathodal) and retina-array configuration (epi/sub) is confirmed in an experiment in which stimuli presented at different positions reveal the center-surround organization of the ganglion cell. A simple biophysical model that relies on voltage changes of cell terminals in the transretinal electric field above the stimulation capacitor explains our results. This study provides a comprehensive guide for efficient stimulation of different retinal neuronal classes with low-amplitude capacitive currents.


Sign in / Sign up

Export Citation Format

Share Document