Sucrose-induced obesity: effect of diet on obesity and brown adipose tissue

1987 ◽  
Vol 253 (1) ◽  
pp. R158-R166 ◽  
Author(s):  
R. B. Kanarek ◽  
J. R. Aprille ◽  
E. Hirsch ◽  
L. Gualtiere ◽  
C. A. Brown

Adult male Sprague-Dawley rats were divided into three groups and fed diets containing either 10, 20, or 40% protein for 56 days. Half of the rats in each dietary condition were given a 32% sucrose solution plus the standard diet and water. Sucrose intake varied directly as a function of dietary protein levels. Rats fed either the 10 or 20% protein diet and sucrose had higher caloric intakes, gained more weight, were more efficient at using calories for weight gain, and had more adipose tissue than rats given the same diet without sucrose. Rats fed the 40% protein diet and sucrose did not exhibit overeating, excess weight gain, or increased feed efficiency relative to animals fed the 40% diet alone. Animals given sucrose had more interscapular brown adipose tissue (IBAT) and a greater metabolic potential for thermogenesis in IBAT as determined by GDP binding in mitochondria than rats not fed sucrose. These results demonstrate that dietary protein is important in the development of sucrose-induced obesity and that increases in IBAT mass and activity can occur concomitant with increased feed efficiency.

1983 ◽  
Vol 244 (4) ◽  
pp. R500-R507 ◽  
Author(s):  
L. J. Bukowiecki ◽  
J. Lupien ◽  
N. Follea ◽  
L. Jahjah

Rats consuming Coca-Cola and Purina chow ad libitum increased their total energy intake by 50% without excess weight gain. Their resistance to cold was markedly improved. These phenomena were characterized by significant increases in interscapular brown adipose tissue weight (IBAT) (91%), cellularity (59%), triglyceride content (52%), protein content (94%), and cytochrome oxidase activity (167%). In contrast, Coca-Cola consumption did not significantly affect the cellularity or triglyceride content of parametrial white adipose tissue (PWAT), although it slightly augmented PWAT weight. The effects of Coca-Cola on cold resistance, IBAT cellularity, and composition were entirely reproduced by sucrose, but not caffeine, consumption. Although caffeine also increased IBAT cellularity and composition, it significantly decreased the rate of body weight gain, PWAT weight, and adipocyte size. Moreover, it markedly inhibited adipocyte proliferation in PWAT thereby mimicking the effects of exercise training and food restriction (Bukowiecki et al., Am. J. Physiol. 239 (Endocrinol. Metab. 2): E422-E429, 1980). It is concluded a) that sucrose and Coca-Cola consumption improve the resistance of rats to cold, most probably by increasing brown adipose tissue cellularity, and b) that moderate caffeine intake might be useful for inhibiting proliferative activity in white adipose tissue, thereby preventing obesity.


1992 ◽  
Vol 282 (1) ◽  
pp. 231-235 ◽  
Author(s):  
D M Smith ◽  
S R Bloom ◽  
M C Sugden ◽  
M J Holness

Starvation (48 h) decreased the concentration of mRNA of the insulin-responsive glucose transporter isoform (GLUT 4) in interscapular brown adipose tissue (IBAT) (56%) and tibialis anterior (10%). Despite dramatic [7-fold (tibialis anterior) and 40-fold (IBAT)] increases in glucose utilization after 2 and 4 h of chow re-feeding, no significant changes in GLUT 4 mRNA concentration were observed in these tissues over this re-feeding period. The results exclude changes in GLUT 4 mRNA concentration in mediating the responses of glucose transport in these tissues to acute re-feeding after prolonged starvation.


1991 ◽  
Vol 277 (3) ◽  
pp. 625-629 ◽  
Author(s):  
J P Revelli ◽  
R Pescini ◽  
P Muzzin ◽  
J Seydoux ◽  
M G Fitzgerald ◽  
...  

The aim of the present work was to study the effect of hypothyroidism on the expression of the beta-adrenergic receptor (beta-AR) in interscapular brown adipose tissue and heart. The total density of plasma membrane beta-AR per tissue is decreased by 44% in hypothyroid rat interscapular brown adipose tissue and by 55% in hypothyroid rat heart compared with euthyroid controls. The effects of hypothyroidism on the density of both beta 1- and beta 2-AR subtypes were also determined in competition displacement experiments. The densities of beta 1- and beta 2-AR per tissue are decreased by 50% and 48% respectively in interscapular brown adipose tissue and by 52% and 54% in the heart. Northern blot analysis of poly(A)+ RNA from hypothyroid rat interscapular brown adipose tissue demonstrated that the levels of beta 1- and beta 2-AR mRNA per tissue are decreased by 73% and 58% respectively, whereas in hypothyroid heart, only the beta 1-AR mRNA is decreased, by 43%. The effect of hypothyroidism on the beta 1-AR mRNA is significantly more marked in the interscapular brown adipose tissue than in the heart. These results indicate that beta-AR mRNA levels are differentially regulated in rat interscapular brown adipose tissue and heart, and suggest that the decrease in beta-AR number in interscapular brown adipose tissue and heart of hypothyroid animals may in part be explained by a decreased steady-state level of beta-AR mRNA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Van Schaik ◽  
C. Kettle ◽  
R. Green ◽  
W. Sievers ◽  
M. W. Hale ◽  
...  

AbstractThe role of central orexin in the sympathetic control of interscapular brown adipose tissue (iBAT) thermogenesis has been established in rodents. Stimulatory doses of caffeine activate orexin positive neurons in the lateral hypothalamus, a region of the brain implicated in stimulating BAT thermogenesis. This study tests the hypothesis that central administration of caffeine is sufficient to activate BAT. Low doses of caffeine administered either systemically (intravenous [IV]; 10 mg/kg) and centrally (intracerebroventricular [ICV]; 5–10 μg) increases BAT thermogenesis, in anaesthetised (1.5 g/kg urethane, IV) free breathing male rats. Cardiovascular function was monitored via an indwelling intra-arterial cannula and exhibited no response to the caffeine. Core temperature did not significantly differ after administration of caffeine via either route of administration. Caffeine administered both IV and ICV increased neuronal activity, as measured by c-Fos-immunoreactivity within subregions of the hypothalamic area, previously implicated in regulating BAT thermogenesis. Significantly, there appears to be no neural anxiety response to the low dose of caffeine as indicated by no change in activity in the basolateral amygdala. Having measured the physiological correlate of thermogenesis (heat production) we have not measured indirect molecular correlates of BAT activation. Nevertheless, our results demonstrate that caffeine, at stimulatory doses, acting via the central nervous system can increase thermogenesis, without adverse cardio-dynamic impact.


Author(s):  
Clara Huesing ◽  
Rui Zhang ◽  
Sanjeev Gummadi ◽  
Nathan Lee ◽  
Emily Qualls‐Creekmore ◽  
...  

2015 ◽  
Vol 67 (4) ◽  
pp. 1431-1431
Author(s):  
E Editorial

The Editor-in-Chief has been informed that the results in Fig. 2A in the article: Single and combined effects of acute and chronic non-thermal stressors on rat interscapular brown adipose tissue metabolic activity, published in the Archives of Biological Sciences in 2013, Vol. 65, Issue 3, partially overlap with the results in Fig. 2, published in the article: Lakic I, Drenca T, Djordjevic J, Vujovic P, Jasnic N, Djurasevic S, Dronjak-Cucakovic S, Cvijic G. Arch Biol Sci. 2011;63(3):589-96, DOI:10.2298/ABS1103589L. After inspection of these articles and illustrations, and after discussion with the corresponding author of both articles, it was revealed that this is a case of partial overlap, i.e. of the authors presenting new findings that contain a comparatively small amount of previously published information. By publishing this corrigendum the journal is providing appropriate cross-referencing to the earlier work. <br><br><font color="red"><b> Link to the corrected article <u><a href="http://dx.doi.org/10.2298/ABS1303919C">10.2298/ABS1303919C</a></b></u>


Sign in / Sign up

Export Citation Format

Share Document