Effect of fibronectin on permeability of normal and TNF-treated lung endothelial cell monolayers

1993 ◽  
Vol 264 (1) ◽  
pp. R90-R96 ◽  
Author(s):  
E. M. Wheatley ◽  
P. A. Vincent ◽  
P. J. McKeown-Longo ◽  
T. M. Saba

Fibronectin is found in a soluble form in plasma and lymph and in an insoluble form in the extracellular matrix. Plasma fibronectin can incorporate into the tissue pool of fibronectin where its adhesive properties may influence cell-cell interaction, cell adhesion to a collagenous matrix, and vascular integrity. Elevation of plasma fibronectin can attenuate the increase in lung vascular permeability in sheep during postoperative gram-negative bacteremia, and plasma fibronectin deficiency can magnify the increase in lung vascular permeability with postoperative sepsis. Using pulmonary endothelial monolayers, we determined if exogenous human plasma fibronectin (pFn) would influence the protein permeability of pulmonary endothelial monolayers as determined by transendothelial clearance (microliters/min) of 125I-albumin after they were exposed to human recombinant tumor necrosis factor-alpha. Treatment of endothelial monolayers with tumor necrosis factor (TNF) (200 U/ml) for 18 h resulted in a significant (P < 0.05) increase in protein permeability. Addition of intact purified human plasma fibronectin to normal confluent endothelial monolayers to yield a medium concentration of 300, 600, and 900 micrograms/ml for 18 h had no effect on baseline protein permeability. In contrast, whereas addition of lower amounts of human plasma fibronectin (300 micrograms/ml) did not attenuate the TNF-induced increase in monolayer permeability, the higher concentrations of 600 or 900 micrograms pFn/ml significantly decreased (P < 0.05) protein permeability. The ability of soluble plasma fibronectin to attenuate the TNF-induced increase in endothelial protein permeability required an incubation time of at least 2-3 h, perhaps due to a lag time required for its incorporation into the extracellular matrix.(ABSTRACT TRUNCATED AT 250 WORDS)

1995 ◽  
Vol 181 (5) ◽  
pp. 1763-1772 ◽  
Author(s):  
J D Loike ◽  
J el Khoury ◽  
L Cao ◽  
C P Richards ◽  
H Rascoff ◽  
...  

We have examined the capacity of four different chemoattractants/cytokines to promote directed migration of polymorphonuclear leukocytes (PMN) through three-dimensional gels composed of extracellular matrix proteins. About 20% of PMN migrated through fibrin gels and plasma clots in response to a gradient of interleukin 8 (IL-8) or leukotriene B4 (LTB4). In contrast, &lt; 0.3% of PMN migrated through fibrin gels in response to a gradient of tumor necrosis factor alpha (TNF) or formyl-methionyl-leucyl-phenylalanine (FMLP). All four chemoattractants stimulated PMN to migrate through gels composed of collagen IV or of basement membrane proteins (Matrigel), or through filters to which fibronectin or fibrinogen had been adsorbed. PMN stimulated with TNF or FMLP adhered and formed zones of close apposition to fibrin, as measured by the exclusion of a 10-kD rhodamine-polyethylene glycol probe from the contact zones between PMN and the underlying fibrin gel. By this measure, IL-8- or LTB4-treated PMN adhered loosely to fibrin, since 10 kD rhodamine-polyethylene glycol permeated into the contact zones between these cells and the underlying fibrin gel. PMN stimulated with FMLP and IL-8, or FMLP and LTB4, exhibited very little migration through fibrin gels, and three times as many of these cells excluded 10 kD rhodamine-polyethylene glycol from their zones of contact with fibrin as PMN stimulated with IL-8 or LTB4 alone. These results show that PMN chemotaxis is regulated by both the nature of the chemoattractant and the composition of the extracellular matrix; they suggest that certain combinations of chemoattractants and matrix proteins may limit leukocyte movements and promote their localization in specific tissues in vivo.


1992 ◽  
Vol 263 (6) ◽  
pp. L627-L633 ◽  
Author(s):  
C. A. Partridge ◽  
C. J. Horvath ◽  
P. J. Del Vecchio ◽  
P. G. Phillips ◽  
A. B. Malik

We examined the possibility that alterations of the extracellular matrix (ECM) contribute to the tumor necrosis factor-alpha (TNF-alpha)-induced increase in endothelial monolayer permeability. Endothelial permeability to 125I-labeled albumin was determined using bovine pulmonary microvessel endothelial cell (BPMVE) monolayers grown to confluence on microporous (0.8 microns diam) gelatin- and fibronectin-coated polycarbonate filters. Treatment of BPMVE with TNF-alpha (10(2) to 10(4) U/ml for 4–24 h) produced concentration- and time-dependent increases in endothelial permeability that paralleled the changes in morphology from cobblestone to elongated cells and the formation of prominent intercellular gaps and actin stress fibers. We examined the role of ECM in these changes using filters coated with ECM made by the BPMVE. Fresh BPMVE seeded onto filters coated with ECM produced by TNF-alpha-treated BPMVE had two- to threefold higher 125I-albumin permeability values than BPMVE monolayers seeded onto filters coated with ECM from control cells (P < 0.05). BPMVE seeded onto ECM from TNF-alpha-treated BPMVE also developed intercellular gaps and centralized actin filaments characteristic of the TNF-alpha-treated BPMVE. This effect was not attributable to TNF-alpha adsorbed to ECM. Polyacrylamide gel electrophoresis of ECM extracted from BPMVE treated with TNF-alpha showed decreased fibronectin. These findings suggest that the TNF-alpha-induced increase in endothelial permeability involves the loss of fibronectin and remodeling of the ECM. The increase in endothelial permeability may be secondary to decreased endothelial cell-ECM contacts resulting in elongation of cells and formation of intercellular gaps.


2001 ◽  
Vol 394 (2) ◽  
pp. 173-181 ◽  
Author(s):  
Durba Mukhopadhyay ◽  
Vincent C. Hascall ◽  
Anthony J. Day ◽  
Antonietta Salustri ◽  
Csaba Fülöp

Blood ◽  
2019 ◽  
Vol 134 (3) ◽  
pp. 252-262 ◽  
Author(s):  
Andrés J. M. Ferreri ◽  
Teresa Calimeri ◽  
Gian Marco Conte ◽  
Dario Cattaneo ◽  
Federico Fallanca ◽  
...  

Abstract Patients with primary central nervous system lymphoma (PCNSL) are treated with high-dose methotrexate-based chemotherapy, which requires hospitalization and extensive expertise to manage related toxicity. The use of R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) could overcome these difficulties, but blood-brain barrier (BBB) penetration of related drugs is poor. Tumor necrosis factor-α coupled with NGR (NGR-hTNF), a peptide targeting CD13+ vessels, induces endothelial permeabilization and improves tumor access of cytostatics. We tested the hypothesis that NGR-hTNF can break the BBB, thereby improving penetration and activity of R-CHOP in patients with relapsed/refractory PCNSL (NCT03536039). Patients received six R-CHOP21 courses, alone at the first course and preceded by NGR-hTNF (0.8 μg/m2) afterward. This trial included 2 phases: an “explorative phase” addressing the effect of NGR-hTNF on drug pharmacokinetic parameters and on vessel permeability, assessed by dynamic contrast-enhanced magnetic resonance imaging and 99mTc-diethylene-triamine-pentacetic acid–single-photon emission computed tomography, and the expression of CD13 on tumor tissue; and an “expansion phase” with overall response rate as the primary end point, in which the 2-stage Simon Minimax design was used. At the first stage, if ≥4 responses were observed among 12 patients, the study accrual would have continued (sample size, 28). Herein, we report results of the explorative phase and the first-stage analysis (n = 12). CD13 was expressed in tumor vessels of all cases. NGR-hTNF selectively increased vascular permeability in tumoral/peritumoral areas, without interfering with drug plasma/cerebrospinal fluid concentrations. The NGR-hTNF/R-CHOP combination was well tolerated: there were only 2 serious adverse events, and grade 4 toxicity was almost exclusively hematological, which were resolved without dose reductions or interruptions. NGR-hTNF/R-CHOP was active, with 9 confirmed responses (75%; 95% confidence interval, 51-99), 8 of which were complete. In conclusion, NGR-hTNF/R-CHOP was safe in these heavily pretreated patients. NGR-hTNF enhanced vascular permeability specifically in tumoral/peritumoral areas, which resulted in fast and sustained responses.


Sign in / Sign up

Export Citation Format

Share Document