Role of angiotensin II and prostaglandins in the regulation of uteroplacental blood flow

1993 ◽  
Vol 264 (3) ◽  
pp. R584-R590 ◽  
Author(s):  
L. L. Woods

This study was designed to determine the importance of the renin-angiotensin (RAS) and prostaglandin (PG) systems in regulating uteroplacental blood flow (UBF). Our objectives were to determine: 1) whether angiotensin II (ANG II) acts as a vasodilator or purely as a vasoconstrictor in the uteroplacental circulation, and 2) whether this circulation is capable of autoregulation. In chronically instrumented pregnant dogs (41-54 days gestation), ANG II was infused intravenously at increasing doses (8, 16, and 24 ng.kg-1 x min-1). Arterial pressure rose from 108 +/- 6 to 146 +/- 4 mmHg and UBF did not change but uterine vascular resistance (UVR) progressively increased. When the experiment was repeated while servo-controlling uterine arterial pressure, UBF fell at all doses, reaching 62 +/- 7% of control at the highest dose, and UVR increased as before. Meclofenamate (6 mg/kg i.v.) did not alter the dose-response curves. In separate experiments, uterine perfusion pressure was reduced in steps to 55 mmHg. UBF was well autoregulated down to approximately 85 mmHg, and neither captopril (14 micrograms.kg-1 x min-1) nor meclofenamate altered UBF autoregulation. Thus ANG II appears to act as a vasoconstrictor in the uteroplacental circulation and any preservation of UBF during ANG II appears to be due to the increased arterial pressure. Also, in the dog the uteroplacental circulation possesses a mild to moderate degree of autoregulatory capability, which does not appear to be dependent on the RAS or PGs.

1999 ◽  
Vol 277 (5) ◽  
pp. E920-E926 ◽  
Author(s):  
Joyce M. Richey ◽  
Marilyn Ader ◽  
Donna Moore ◽  
Richard N. Bergman

We set out to examine whether angiotensin-driven hypertension can alter insulin action and whether these changes are reflected as changes in interstitial insulin (the signal to which insulin-sensitive cells respond to increase glucose uptake). To this end, we measured hemodynamic parameters, glucose turnover, and insulin dynamics in both plasma and interstitial fluid (lymph) during hyperinsulinemic euglycemic clamps in anesthetized dogs, with or without simultaneous infusions of angiotensin II (ANG II). Hyperinsulinemia per se failed to alter mean arterial pressure, heart rate, or femoral blood flow. ANG II infusion resulted in increased mean arterial pressure (68 ± 16 to 94 ± 14 mmHg, P < 0.001) with a compensatory decrease in heart rate (110 ± 7 vs. 86 ± 4 mmHg, P < 0.05). Peripheral resistance was significantly increased by ANG II from 0.434 to 0.507 mmHg ⋅ ml−1⋅ min ( P < 0.05). ANG II infusion increased femoral artery blood flow (176 ± 4 to 187 ± 5 ml/min, P < 0.05) and resulted in additional increases in both plasma and lymph insulin (93 ± 20 to 122 ± 13 μU/ml and 30 ± 4 to 45 ± 8 μU/ml, P < 0.05). However, glucose uptake was not significantly altered and actually had a tendency to be lower (5.9 ± 1.2 vs. 5.4 ± 0.7 mg ⋅ kg−1⋅ min−1, P > 0.10). Mimicking of the ANG II-induced hyperinsulinemia resulted in an additional increase in glucose uptake. These data imply that ANG II induces insulin resistance by an effect independent of a reduction in interstitial insulin.


2000 ◽  
Vol 278 (2) ◽  
pp. H353-H359 ◽  
Author(s):  
Donna S. Lambers ◽  
Suzanne G. Greenberg ◽  
Kenneth E. Clark

The objective was to determine the receptor subtype of angiotensin II (ANG II) that is responsible for vasoconstriction in the nonpregnant ovine uterine and systemic vasculatures. Seven nonpregnant estrogenized ewes with indwelling uterine artery catheters and flow probes received bolus injections (0.1, 0.3 and 1 μg) of ANG II locally into the uterine artery followed by a systemic infusion of ANG II at 100 ng ⋅ kg−1 ⋅ min−1for 10 min to determine uterine vasoconstrictor responses. Uterine ANG II dose-response curves were repeated following administration of the ANG II type 2 receptor (AT2) antagonist PD-123319 and then repeated again in the presence of an ANG II type 1 receptor (AT1) antagonist L-158809. In a second experiment, designed to investigate the mechanism of ANG II potentiation that occurred in the presence of AT2 blockade, nonestrogenized sheep received a uterine artery infusion of L-158809 (3 mg/min for 5 min) prior to the infusion of 0.03 μg/min of ANG II for 10 min. ANG II produced dose-dependent decreases in uterine blood flow ( P < 0.03), which were potentiated in the presence of the AT2 antagonist ( P < 0.02). Addition of the AT1 antagonist abolished the uterine vascular responses and blocked ANG II-induced increases in systemic arterial pressure ( P < 0.01). Significant uterine vasodilation ( P < 0.01) was noted with AT1 blockade in the second experiment, which was reversed by administration of the AT2 antagonist or by the nitric oxide synthetase inhibitor N ω-nitro-l-arginine methyl ester. We conclude that the AT1- receptors mediate the systemic and uterine vasoconstrictor responses to ANG II in the nonpregnant ewe. AT2-receptor blockade resulted in a potentiation of the uterine vasoconstrictor response to ANG II, suggesting that the AT2-receptor subtype may modulate uterine vascular responses to ANG II potentially by release of nitric oxide.


2002 ◽  
Vol 283 (2) ◽  
pp. R451-R459 ◽  
Author(s):  
Ling Xu ◽  
Alan F. Sved

Angiotensin II (ANG II) has complex actions on the cardiovascular system. ANG II may act to increase sympathetic vasomotor outflow, but acutely the sympathoexcitatory actions of exogenous ANG II may be opposed by ANG II-induced increases in arterial pressure (AP), evoking baroreceptor-mediated decreases in sympathetic nerve activity (SNA). To examine this hypothesis, the effect of ANG II infusion on lumbar SNA was measured in unanesthetized chronic sinoaortic-denervated rats. Chronic sinoaortic-denervated rats had no reflex heart rate (HR) responses to pharmacologically evoked increases or decreases in AP. Similarly, in these denervated rats, nitroprusside-induced hypotension had no effect on lumbar SNA; however, phenylephrine-induced increases in AP were still associated with transient decreases in SNA. In control rats, infusion of ANG II (100 ng · kg−1 · min−1 iv) increased AP and decreased HR and SNA. In contrast, ANG II infusion increased lumbar SNA and HR in sinoaortic-denervated rats. In rats that underwent sinoaortic denervation surgery but still had residual baroreceptor reflex-evoked changes in HR, the effect of ANG II on HR and SNA was variable and correlated to the extent of baroreceptor reflex impairment. The present data suggest that pressor concentrations of ANG II in rats act rapidly to increase lumbar SNA and HR, although baroreceptor reflexes normally mask these effects of ANG II. Furthermore, these studies highlight the importance of fully characterizing sinoaortic-denervated rats used in experiments examining the role of baroreceptor reflexes.


1992 ◽  
Vol 263 (5) ◽  
pp. E837-E843 ◽  
Author(s):  
L. E. Davis ◽  
R. R. Magness ◽  
C. R. Rosenfeld

Estradiol-17 beta (E2 beta) produces uterine and systemic vasodilation in nonpregnant ewes without altering mean arterial pressure (MAP). Mechanisms responsible for maintaining MAP and thus uterine blood flow (UBF) may include activation of the renin-angiotensin and/or adrenergic systems. We therefore investigated the effects of systemic blockade of angiotensin II (ANG II) and/or alpha-adrenergic receptors in nonpregnant, castrated ewes, using saralasin (Sar) and/or phentolamine (Phen) in the presence or absence of intravenous E2 beta (1.0 microgram/kg). In nonestrogenized ewes neither antagonist alone had substantial cardiovascular effects; however, Sar + Phen decreased systemic vascular resistance (SVR) 20 +/- 7.4% (SE) and increased heart rate (HR) 50 +/- 19% (P < 0.01); MAP and UBF were unaffected. Following E2 beta treatment SVR fell 17 +/- 2.4% (P < 0.01), UBF increased more than fourfold, and MAP was unchanged. Compared with E2 beta alone, Phen + E2 beta decreased SVR 42 +/- 4.7%, and MAP fell 11 +/- 1.8% (P < 0.05) despite 40–50% increases in HR and cardiac output (P < 0.05). Responses to Sar + E2 beta were similar to E2 beta alone, except for a fall in MAP, whereas responses to Sar + Phen + E2 beta resembled those of Phen + E2 beta. E2 beta-induced uterine vasodilation was unaltered by Sar and/or Phen. During E2 beta-induced vasodilation, MAP is maintained by enhanced activation of the alpha-adrenergic and renin-angiotensin systems; however, uterine vascular responses to E2 beta are independent of both systems and perfusion pressure.


1988 ◽  
Vol 254 (4) ◽  
pp. H709-H718 ◽  
Author(s):  
G. A. Meininger ◽  
J. P. Trzeciakowski

This study investigated the degree to which autoregulation of blood flow interacts with vasoconstrictors to determine vascular resistance. Anesthetized rats were instrumented with a Doppler flow probe on the superior mesenteric artery (SMA) to measure blood flow and for calculation of vascular resistance. An adjustable occluder was placed on the SMA to set local perfusion pressure at values independent of mean arterial pressure (MAP) even when MAP was increased by the vasoconstrictors. Infusion of angiotensin II (ANG II, 50-1,247 ng.kg-1.min-1) produced a dose-dependent rightward shift in the intestinal pressure-flow relationship and elevated MAP from 85 to 127 mmHg. Low doses of phenylephrine (PE, 2.5-12.4 micrograms.kg-1.min-1) failed to shift the pressure-flow curve but did increase arterial pressure from 83 to 102 mmHg. At higher doses (25-62 micrograms.kg-1.min-1), PE also shifted the pressure-flow curve to the right. Maintaining local perfusion pressure at different values during the infusion of ANG II or PE produced a family of dose-response curves, with each exhibiting a different maximum change in resistance. When local pressure was permitted to increase with MAP, the composite dose-response curve for resistance that was obtained reflected the influence of the rise in local pressure (i.e., auto-regulation) and vasoconstrictor dose. At low doses of PE the increase in vascular resistance was attributable solely to an autoregulatory response related to the rise in MAP and not due to the constrictor effects of PE. Thus these data indicate that the rise in MAP accompanying systemic infusion of a vasoconstrictor stimulates autoregulation to amplify the local increase in vascular resistance.


1996 ◽  
Vol 271 (3) ◽  
pp. H1015-H1021 ◽  
Author(s):  
T. Saigusa ◽  
M. Iriki ◽  
J. Arita

The role of endogenous angiotensin II (ANG II) at the level of the rostral (RVLM) and caudal ventrolateral medulla (CVLM) in the control of sympathetic baroreflex function was investigated in urethan-anesthetized rabbits. The baroreflex relationship between mean arterial pressure and integrated renal sympathetic nerve activity (RSNA) was compared before and during microinfusion of saralasin, an ANG II receptor antagonist into RVLM or CVLM. The infusion of saralasin (20 pmol/min) into RVLM reduced the upper plateau, the range, and the range-dependent gain of the baroreflex, as well as the resting level of RSNA. The infusion of saralasin into CVLM augmented the upper plateau, the reflex range, and the range-dependent gain, whereas it did not alter the resting level of RSNA or mean arterial pressure. These results suggest that 1) the ANG II networks in RVLM are tonically active, influencing the resting level of the sympathetic outflow and facilitating the sympathetic baroreflex function, and 2) the ANG II networks in CVLM do not significantly influence the sympathetic activity in the resting state but exert an inhibitory effect on the baroreflex response when arterial pressure falls below the resting level.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Maryam Maleki ◽  
Mehdi Nematbakhsh

Background. Renal ischemia/reperfusion (I/R) is one of the major causes of kidney failure, and it may interact with renin angiotensin system while angiotensin II (Ang II) type 2 receptor (AT2R) expression is gender dependent. We examined the role of AT2R blockade on vascular response to Ang II after I/R in rats.Methods.Male and female rats were subjected to 30 min renal ischemia followed by reperfusion. Two groups of rats received either vehicle or AT2R antagonist, PD123319. Mean arterial pressure (MAP), and renal blood flow (RBF) responses were assessed during graded Ang II (100, 300, and 1000 ng/kg/min, i.v.) infusion at controlled renal perfusion pressure (RPP).Results.Vehicle or antagonist did not alter MAP, RPP, and RBF levels significantly; however, 30 min after reperfusion, RBF decreased insignificantly in female treated with PD123319 (P=0.07). Ang II reduced RBF and increased renal vascular resistance (RVR) in a dose-related fashion (Pdose<0.0001), and PD123319 intensified the reduction of RBF response in female (Pgroup<0.005), but not in male rats.Conclusion.The impact of the AT2R on vascular responses to Ang II in renal I/R injury appears to be sexually dimorphic. PD123319 infusion promotes these hemodynamic responses in female more than in male rats.


2008 ◽  
Vol 294 (1) ◽  
pp. R151-R161 ◽  
Author(s):  
Liomar A. A. Neves ◽  
Kathryn Stovall ◽  
JaNae Joyner ◽  
Gloria Valdés ◽  
Patricia E. Gallagher ◽  
...  

The present study was designed to determine ANG peptide content [ANG I, ANG II, ANG-(1-7)], ACE2 mRNA, and the immunocytochemical distribution of ANG-(1-7) and ACE2 in the uteroembryonic unit during early and late gestation in Sprague-Dawley rats and in a rat model of pregnancy-induced hypertension, the reduced uterine perfusion pressure (RUPP) model. At early pregnancy ANG-(1-7) and ACE2 staining were localized in the primary and secondary decidual zone and luminal and glandular epithelial cells. During late gestation, ANG-(1-7) and ACE2 staining was visualized in the labyrinth placenta and amniotic and yolk sac epithelium. Uterine ANG II concentration at early pregnancy was significantly decreased by 21–55% in the implantation and interimplantation sites compared with virgin rats, whereas ANG-(1-7) levels were maintained at prepregnancy levels. At late gestation, uterine concentrations of ANG I and ANG II were significantly increased (30% and 25%, respectively). In RUPP animals, ANG-(1-7) concentration is significantly reduced in the uterus (181 ± 16 vs. 372 ± 74 fmol/g of tissue) and placenta (143 ± 26 vs. 197 ± 20 fmol/g of tissue). ACE2 mRNA increased in the uterus of early pregnant compared with virgin rats, yet within the implantation site it was downregulated. At late pregnancy, ACE2 mRNA is elevated by 58% in the uterus and decreased by 59% in RUPP animals. The regulation of ANG-(1-7) and ACE2 in early and late pregnancy supports the hypothesis that ANG-(1-7) and ACE2 may act as a local autocrine/paracrine regulator throughout pregnancy, participating in the early (angiogenesis, apoptosis, and growth) and late (uteroplacental blood flow) events of pregnancy.


2001 ◽  
Vol 79 (6) ◽  
pp. 481-489 ◽  
Author(s):  
S Jerez ◽  
M Peral de Bruno ◽  
A Coviello

The aim of this study was to characterize the role of the endothelium in angiotensin II-desensitization and its mechanisms of action. Rabbit aortic rings were exposed to increasing doses of angiotensin II (Ang II, 10–9 to 2.5 × 10–6) to generate two cumulative dose-response curves (CDRC I and II). A 50-min interval separated CDRC I and II. Desensitization was observed at all doses in unrubbed aortic tissue and at lower doses in rubbed aortic tissue. Tachyphylaxis was greater in arteries with endothelium. Treatment of intact rings with L-NG-nitroarginine methyl ester (L-NAME, 10–4 M) did not prevent this phenomenon. However, indomethacin (10–5 M) and miconazol (10–6 M) attenuated Ang II-desensitization. Treatment of unrubbed rings with nifedipine (10–6 M) and cromakalim (10–6 M) inhibited the effect of indomethacin. To confirm the involvement of K+ channels, unrubbed and rubbed aortic rings were treated with the KCa2+ blockers apamin (10–7 M), tetraethylammonium (TEA, 10–3 M), and iberiotoxin (10–8 M), and the KATP blocker glibenclamide (10–5 M). In both arteries apamin, TEA, and glibenclamide abolished the tachyphylaxis without changes in the maximal response. Iberiotoxin diminished Ang II-desensitization in rubbed but not unrubbed arteries. Results from this study suggest that Ang II-desensitization involves endothelium-dependent and -independent mechanisms. Endothelium-dependent desensitization could be mediated by a cyclooxygenase-cytochrome P450 product, which could act by increasing KCa2+ channel activity.Key words: angiotensin II, rabbit aorta, desensitization, endothelium, cyclooxygenase products.


1990 ◽  
Vol 258 (4) ◽  
pp. H1032-H1041 ◽  
Author(s):  
G. A. Meininger ◽  
J. P. Trzeciakowski

Relative contributions of local autoregulatory tone and vasoconstrictor tone to skeletal muscle vascular resistance were studied in anesthetized rats during hypertension produced by vasoconstrictor infusion. Rats were instrumented with a Doppler flow probe on the sacral aorta (SA) to measure blood flow and to allow calculation of vascular resistance. An occluder was placed on the SA and used to produce stepwise reductions in local perfusion pressure. Pressure-flow curves for the hindquarters were obtained in the absence and presence of elevated mean arterial pressure (MAP) produced by infusion of angiotensin II (ANG II; 50-1,247 ng.kg-1.min-1) or phenylephrine (PE; 2.5-12.4 micrograms.kg-1.min-1). Both ANG II and PE infusion increased MAP. For example, MAP was increased by ANG II from 91 to 134 mmHg and by PE from 89 to 156 mmHg. In addition, infusions of ANG II and PE produced dose-dependent rightward shifts in the hindquarters pressure-flow relationship. To examine the effect of pressure on the dose-response relationships of ANG II or PE, local perfusion pressure was adjusted to remain constant at various pressure levels that were independent of MAP during drug infusions. This produced a series of distinct dose-response curves with each curve defined by a different pressure level and with each characterized by a different maximum change in vascular resistance. If local perfusion pressure was not held constant but was permitted to increase with MAP, a compound dose-response curve was obtained in which the combined effects of the change in local pressure (i.e., autoregulation) and vasoconstrictor dose on vascular resistance could be discerned. These data demonstrate that hindquarters blood flow autoregulation continues to occur in the presence of vasoconstrictors. Consequently, autoregulatory mechanisms may be stimulated by any increase in MAP whether associated with systemic vasoconstrictor infusion or activation of neurohumoral pressor systems. The result is an amplified rise in local vascular resistance.


Sign in / Sign up

Export Citation Format

Share Document