Effect of pioglitazone on vascular reactivity in vivo and in vitro

1996 ◽  
Vol 270 (3) ◽  
pp. R660-R666 ◽  
Author(s):  
T. A. Kotchen ◽  
H. Y. Zhang ◽  
S. Reddy ◽  
R. G. Hoffmann

Pioglitazone (a thiazolidinedione derivative) increases insulin sensitivity and prevents hypertension in the Dahl-salt-sensitive (S) rat. The present study was undertaken to determine if pioglitazone modulates pressor responsiveness to vasoactive agents, both in vivo and in vitro. In vivo, pretreatment with pioglitazone inhibited (P < 0.02) pressor responses to both norepinephrine and angiotensin II in conscious Dahl-S, but not in Sprague-Dawley rats. In vitro, pioglitazone augmented the capacity of insulin to inhibit pressor responses of strips of thoracic aortas to norepinephrine, but not to angiotensin. Additionally, in vitro, incubation with insulin plus pioglitazone augmented acetylcholine-induced, but not nitroprusside-induced vasodilation. Pioglitazone pretreatment increased (P < 0.001) in vitro insulin-stimulated glucose uptake in adipose tissue, but not in thoracic aortas of Dahl-S. We hypothesize that pioglitazone attenuates hypertension by modulating the effects of insulin on vascular function, resulting in both blunted vasoconstriction and augmented acetylcholine-induced vasodilation. These alterations are not accounted for by an effect of pioglitazone on glucose uptake by vascular smooth muscle.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Himanshu Kushwah ◽  
Nidhi Sandal ◽  
Meenakshi Chauhan ◽  
Gaurav Mittal

Abstract Background Uncontrolled bleeding is one of the primary reasons for preventable death in both civilian trauma and military battle field. This study evaluates in vitro and in vivo hemostatic potential of four biopolymeric natural gums, namely, gum tragacanth, guar gum, xanthan gum, and gum acacia. In vitro evaluation of whole blood clotting time and erythrocyte agglutination assay were carried out. In vitro cytotoxicity studies with respect to each gum were done in human lymphocytes to ascertain percent cell viability. In vivo hemostatic potential of each gum (as sponge dressing and powder form) was evaluated in Sprague Dawley rats using tail bleeding assay and compared with commercially available hemostatic sponge. Other important parameters like (a) time taken for complete hemostasis, (b) amount of blood absorbed, (c) adherence strength of developed hemostatic dressing(s), (d) incidence of re-bleeding, and (e) survival of animals were also studied. Results Of the four test gums studied, xanthan gum (@3mg/ml of blood) and gum tragacanth (@35mg/ml of blood) were able to clot blood in least time (58.75±6.408 s and 59.00±2.082 s, respectively) and exhibited very good hemostatic potential in vitro. Except for xanthan gum, all other test gums did not exhibit any significant cytotoxicity at different time points till 24 h. In rat tail bleeding experiments, gum tragacanth sponge dressing and powder achieved hemostasis in least time (156.2±12.86 s and 76±12.55 s, respectively) and much earlier than commercially available product (333.3±38.84 s; p˂0.01). Conclusion Results indicate potential of gum tragacanth to be developed into a suitable hemostatic product.


1991 ◽  
Vol 7 (3) ◽  
pp. 125-139 ◽  
Author(s):  
David R. Bevan ◽  
David M. Ruggio

To evaluate health risks associated with exposure to particulates in the environment, it is necessary to quantify the bioavailability of carcinogens associated with the particulates. Direct analysis of bioavailability in vivo is most readily accomplished by adsorbing a radiolabeled form of the carcinogen to the particulate. A sam ple of native diesel particulate collected from an Oldsmobile die sel engine that contained 1.03 μ g benzo[ a] pyrene ( BaP)/ g particulate was supplemented with exogenous [ 3 H]- BaP to pro duce a particulate containing 2.62 μ g BaP/g. To insure that elu tion of BaP from native and [3 H] -BaP-supplemented particulate was similar, in vitro analyses were performed. When using phos pholipid vesicles composed of dimyristoylphosphatidylcholine (DMPC), 1.52% of total BaP was eluted from native particulate into the vesicles in 18 hrs; from [ 3 H] -BaP supplemented particu late, 1.68% was eluted. Using toluene as eluent, 2.55% was eluted from native particulate, and 8.25% from supplemented particulate, in 6 hrs. Supplemented particulate was then instilled intratracheally into male Sprague-Dawley rats and distribution of radioactivity was analyzed at selected times over 3 days. About 50% of radioactivity remained in lungs at 3 days following instil lation, with 30% being excreted into feces and the remainder dis tributed throughout the organs of the rats. To estimate the amount of radioactivity that entered feces through swallowing of a portion of the instilled dose, [3 H] -BaP-supplemented particu late was instilled intratracheally into rats that had a cannula sur gically implanted in the bile duct. Rate of elimination of radio activity into bile was monitored; 10.6% of radioactivity was re covered in 6 hr, an amount slightly lower than the 12.8% ex creted in 6 hrs into feces of animals with intact bile ducts. Our studies provide a quantitative description of the distribution of BaP and its metabolites following intratracheal instillation of diesel particulate. Because rates of elution of BaP in vitro are similar for native diesel particulate and particulate with supple mental [ 3H] -BaP, our results provide a reasonable estimate of the bioavailability in vivo of BaP associated with diesel particu late.


1996 ◽  
Vol 17 (3) ◽  
pp. 451-457 ◽  
Author(s):  
Barbara A. Hill ◽  
Paul C. Brown ◽  
Karl-Heinz Preisegger ◽  
Jeffrey A. Silverman

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Cameron G McCarthy ◽  
Camilla F Wenceslau ◽  
Safia Ogbi ◽  
Theodora Szasz ◽  
R.Clinton Webb

Toll-like receptor (TLR)9 is a pattern recognition receptor of the innate immune system. Recently, a non-canonical stress tolerance pathway has been reported for TLR9 in non-immune cells (cardiomyocytes and neurons), independent of inflammatory signaling. It was observed that TLR9 inhibited sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA)2, increasing cytosolic calcium, and resulting in 5’ AMP-activated protein kinase (AMPK)α activation. In our laboratory, we have reported that TLR9 treatment in vivo causes arterial dysfunction that contributes to the pathogenesis of hypertension and that these phenotypes occurred in conjunction with vascular AMPKα phosphorylation (Thr172). However, whether a dysregulation in calcium homeostasis via the non-canonical stress tolerance cascade underlies the impaired vascular function after TLR9 stimulation needs to be clarified. We hypothesized that TLR9 activation would inhibit SERCA2 activity in the vasculature. SERCA2 activity was assessed using a luciferase-based ATP quantification kit. Microsomes were isolated from pooled aortae of Sprague-Dawley rats and subjected to treatment with either Vehicle (Veh) or ODN2395 (2 μM), with or without a SERCA2 inhibitor (thapsigargin; 1 μM). The presence of thapsigargin increased ATP concentrations similarly in both Veh and ODN2395 [ATP (μM), Veh: 19±3 vs. Veh+thapsigargin: 140±35; ODN2395: 22±9 vs. ODN2395+thapsigargin: 129±12, both p<0.05], suggesting TLR9 activation did not inhibit SERCA2 activity. Next, MRA from Sprague-Dawley rats were divided into three sections for Western blot analysis of AMPKα-activating kinases, specifically calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and liver kinase B1 (LKB1). ODN2395 alone did not increase protein expression of phospho-CaMKK2 Ser511 (p>0.05), again suggesting calcium-independent activation of AMPKα. However, ODN2395 did increase phospho-LKB1 Ser428 (3.8 fold vs. Veh, p<0.05), and this increase in expression was inhibited by pre-incubation with TLR9 antagonist ODN2088 (20 μM) (p>0.05). These results suggest that the TLR9 non-canonical stress tolerance pathway in the vasculature is mediated by LKB1, and not SERCA2 inhibition.


1979 ◽  
Vol 81 (2) ◽  
pp. 183-198 ◽  
Author(s):  
ANNE-MARIE SCOTT ◽  
SUSAN MURPHY ◽  
R. A. HAWKINS

Dimethylbenz(a)anthracene (DMBA)-induced and transplanted rat mammary tumours (2 lines) were examined for oestrogen receptor activity, and for sensitivity to hormones in vivo (by ovariectomy) and in vitro (by tissue culture). In vivo, the growth of all tumours induced by the administration of DMBA in random-bred Sprague–Dawley rats was found to be dependent on the ovary, whilst in all transplanted tumours (12 TG-3 and six TG-5 lines), maintained in an inbred strain of Sprague–Dawley rats, growth was found to be independent of the ovary. In vitro, the capacity for DNA synthesis in DMBA-induced tumours was better maintained after 24 h when insulin (10 μg/ml) and corticosterone (5 μg/ml) or insulin, corticosterone and prolactin (each 5 μg/ml) were present in the medium (five out of 12 and eight out of 11 tumours respectively); no effect of hormones in the media was detected after 48 h. In the transplanted tumours, no effect of hormones on DNA synthesis was detected after either 24 or 48 h of culture. Synthesis of lecithin was not detectably influenced by the presence of hormones in either DMBA-induced or transplanted tumours. Oestrogen receptor concentrations were, on average, significantly higher in the DMBA-induced tumours than in either line of transplanted tumour. For 22 DMBA-induced tumours and 15 transplanted tumours, the effect of hormones in vitro (`response') was directly correlated with receptor concentration at time 0 (Spearman's ρ = + 0·59) and inversely correlated with the rate of DNA synthesis (`basal') at time 0 (Spearman's ρ = −0·62). No single parameter or pair of parameters permitted accurate distinction between the tumour types.


2018 ◽  
Vol 49 (4) ◽  
pp. 1420-1430 ◽  
Author(s):  
Lixiong He ◽  
Yujing Huang ◽  
Qiaonan Guo ◽  
Hui Zeng ◽  
Chuanfen Zheng ◽  
...  

Background/Aims: Our recent study indicated that the serum microcystin-LR (MC-LR) level is positively linked to the risk of human hepatocellular carcinoma (HCC). Gankyrin is over-expressed in cancers and mediates oncogenesis; however, whether MC-LR induces tumor formation and the role of gankyrin in this process is unclear. Methods: We induced malignant transformation of L02 liver cells via 35 passages with exposure to 1, 10, or 100 nM MC-LR. Wound healing, plate and soft agar colony counts, and nude mice tumor formation were used to evaluate the tumorigenic phenotype of MC-LR-treated cells. Silencing gankyrin was used to confirm its function. We established a 35-week MC-LR exposure rat model by twice weekly intraperitoneal injection with 10 μg/kg body weight. In addition, 96 HCC patients were tested for tumor tissue gankyrin expression and serum MC-LR levels. Results: Chronic low-dose MC-LR exposure increased proliferation, mobility, clone and tumor formation abilities of L02 cells as a result of gankyrin activation, while silencing gankyrin inhibited the carcinogenic phenotype of MC-LR-treated cells. MC-LR also induced neoplastic liver lesions in Sprague-Dawley rats due to up-regulated gankyrin. Furthermore, a trend of increased gankyrin was observed in humans exposed to MC-LR. Conclusion: These results suggest that MC-LR induces hepatocarcinogenesis in vitro and in vivo by increasing gankyrin levels, providing new insight into MC-LR carcinogenicity studies.


1994 ◽  
Vol 267 (2) ◽  
pp. R502-R507 ◽  
Author(s):  
H. Sidransky ◽  
E. Verney

Since Lewis rats are susceptible to many inflammatory diseases and have been used in an experimental model of the eosinophilia-myalgia syndrome, we investigated whether Lewis rats would respond to L-tryptophan as have Sprague-Dawley rats reported earlier. In this comparative study using females of both strains, we observed a decrease in the affinity of in vitro L-tryptophan binding to hepatic nuclei and nuclear envelopes of Lewis rats compared with Sprague-Dawley rats. However, in vivo stimulatory effects of administering L-tryptophan on hepatic polyribosomal aggregation, protein synthesis, and nuclear RNA release were similar in both strains. In vitro [3H]tryptophan binding to hepatic nuclear envelopes, using L-tryptophan implicated in cases of the eosinophilia-myalgia syndrome, revealed less specific binding than when using nonimplicated L-tryptophan in both strains. The possible significance of the quantitative difference in the binding affinity of L-tryptophan to hepatic nuclei of Lewis rats compared with those of Sprague-Dawley rats is as yet undetermined.


1986 ◽  
Vol 250 (6) ◽  
pp. H1127-H1135
Author(s):  
S. E. Martin ◽  
E. L. Bockman

Intravenous norepinephrine increases glycerol release and blood flow in adipose tissue. The vasodilation may be an indirect effect of norepinephrine through the production of adenosine. Adenosine increases glucose uptake and inhibits lipolysis in vitro. To test whether adenosine regulates blood flow and/or metabolism in vivo, adenosine deaminase (ADA) was infused intra-arterially into the inguinal fat pads of anesthetized dogs. In unstimulated tissues, ADA (n = 7) significantly increased vascular resistance and significantly decreased glucose uptake compared with the effects of a control (boiled deaminase, n = 6) infusion. ADA completely blocked the norepinephrine-induced vasodilation (n = 6). No potentiation of basal or catecholamine-stimulated lipolysis was observed with ADA. The presence of ADA in the interstitial space was verified by analysis of lymph effluents. Interstitial levels of ADA were inversely correlated with the tissue contents of adenosine. These data support the hypothesis that adenosine is a regulator of blood flow in basal and stimulated adipose tissue. Adenosine also appears to regulate glucose uptake, but not lipolysis, in vivo.


2007 ◽  
Vol 293 (1) ◽  
pp. F212-F218 ◽  
Author(s):  
Hetal S. Kocinsky ◽  
Diane W. Dynia ◽  
Tong Wang ◽  
Peter S. Aronson

Direct phosphorylation of sodium hydrogen exchanger type 3 (NHE3) is a well-established physiological phenomenon; however, the exact role of NHE3 phosphorylation in its regulation remains unclear. The objective of this study was to evaluate whether NHE3 phosphorylation at serines 552 and 605 is physiologically regulated in vivo and, if so, whether changes in phosphorylation at these sites are tightly coupled to changes in transport activity. To this end, we directly compared PKA-induced NHE3 inhibition with site-specific changes in NHE3 phosphorylation in vivo and in vitro. In vivo, PKA was activated using an intravenous infusion of parathyroid hormone in Sprague-Dawley rats. In vitro, PKA was activated directly in opossum kidney (OKP) cells using forskolin and IBMX. NHE3 activity was assayed in microvillar membrane vesicles in the rat model and by 22Na uptake in the OKP cell model. In both cases, NHE3 phosphorylation at serines 552 and 605 was determined using previously characterized monoclonal phosphospecific antibodies directed to these sites. In vivo, we found dramatic changes in NHE3 phosphorylation at serines 552 and 605 with PKA activation but no corresponding alteration in NHE3 activity. This dissociation between NHE3 phosphorylation and activity was further verified in OKP cells in which phosphorylation clearly preceded transport inhibition. We conclude that although phosphorylation of NHE3 at serines 552 and 605 is regulated by PKA both in vivo and in vitro, phosphorylation of these sites does not directly alter Na+/H+ exchange activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Susan D’Souza ◽  
Jabar A. Faraj ◽  
Stefano Giovagnoli ◽  
Patrick P. DeLuca

The aim of this study was to design and evaluate biodegradable PLGA microspheres for sustained delivery of Risperidone, with an eventual goal of avoiding combination therapy for the treatment of schizophrenia. Two PLGA copolymers (50 : 50 and 75 : 25) were used to prepare four microsphere formulations of Risperidone. The microspheres were characterized by several in vitro techniques. In vivo studies in male Sprague-Dawley rats at 20 and 40 mg/kg doses revealed that all formulations exhibited an initial burst followed by sustained release of the active moiety. Additionally, formulations prepared with 50 : 50 PLGA had a shorter duration of action and lower cumulative AUC levels than the 75 : 25 PLGA microspheres. A simulation of multiple dosing at weekly or 15-day regimen revealed pulsatile behavior for all formulations with steady state being achieved by the second dose. Overall, the clinical use of Formulations A, B, C, or D will eliminate the need for combination oral therapy and reduce time to achieve steady state, with a smaller washout period upon cessation of therapy. Results of this study prove the suitability of using PLGA copolymers of varying composition and molecular weight to develop sustained release formulations that can tailor in vivo behavior and enhance pharmacological effectiveness of the drug.


Sign in / Sign up

Export Citation Format

Share Document