scholarly journals Role of ANG II in mediating somatosensory-induced renal nerve-dependent antinatriuresis in the rat

1998 ◽  
Vol 275 (1) ◽  
pp. R194-R202 ◽  
Author(s):  
Chunlong Huang ◽  
Edward J. Johns

This study examined the renal nerve-dependent renal hemodynamic and tubular responses to somatosensory stimulation in the anesthetized rat by use of subcutaneously applied capsaicin when the action of ANG II was blocked peripherally or selectively within the brain. Activation of skin somatosensory receptors caused a transient reversible 10–15% increase in blood pressure, and while renal perfusion pressure was regulated at control levels, there was a transient fall in urine flow and sodium excretion even though both renal blood flow and glomerular filtration rate were unchanged. These reflexly induced excretory responses were abolished when the renal nerves were sectioned. Administration of the ANG II AT1-receptor antagonist, losartan, either intravenously at 3 or 10 mg/kg or locally into the lateral cerebroventricles at 15 μg plus 7.5 μg/h, had no effect on capsaicin-induced vasopressor responses but blocked the reductions in urine flow and sodium excretion. These findings are consistent with ANG II being involved in at least two stages in the reflex, one centrally and one at the periphery.

2001 ◽  
Vol 280 (5) ◽  
pp. R1450-R1456 ◽  
Author(s):  
Tomoyuki Yamasaki ◽  
Isao Tamai ◽  
Yasuo Matsumura

To investigate the possible involvement of histamine H3 receptors in renal noradrenergic neurotransmission, effects of (R)alpha-methylhistamine (R-HA), a selective H3-receptor agonist, and thioperamide (Thiop), a selective H3-receptor antagonist, on renal nerve stimulation (RNS)-induced changes in renal function and norepinephrine (NE) overflow in anesthetized dogs were examined. RNS (0.5–2.0 Hz) produced significant decreases in urine flow and urinary sodium excretion and increases in NE overflow rate (NEOR), without affecting renal hemodynamics. When R-HA (1 μg · kg−1 · min−1) was infused intravenously, mean arterial pressure and heart rate were significantly decreased, and there was a tendency to reduce basal values of urine flow and urinary sodium excretion. During R-HA infusion, RNS-induced antidiuretic action and increases in NEOR were markedly attenuated. Thiop infusion (5 μg · kg−1 · min−1) did not affect basal hemodynamic and excretory parameters. Thiop infusion caused RNS-induced antidiuretic action and increases in NEOR similar to the basal condition. When R-HA was administered concomitantly with Thiop infusion, R-HA failed to attenuate the RNS-induced antidiuretic action and increases in NEOR. However, in the presence of pyrilamine (a selective H1-receptor antagonist) or cimetidine (a selective H2-receptor antagonist) infusion, R-HA attenuated the RNS-induced actions, similarly to the case without these antagonists. Thus functional histamine H3 receptors, possibly located on renal noradrenergic nerve endings, may play the role of inhibitory modulators of renal noradrenergic neurotransmission.


2001 ◽  
Vol 280 (3) ◽  
pp. F524-F529 ◽  
Author(s):  
Albert Quan ◽  
Michel Baum

The proximal tubule synthesizes and luminally secretes high levels of angiotensin II, which modulate proximal tubule transport independently of systemic angiotensin II. The purpose of this in vivo microperfusion study is to examine whether the renal nerves modulate the effect of intraluminal angiotensin II on proximal tubule transport. The decrement in volume reabsorption after addition of 10−4 M luminal enalaprilat is a measure of the role of luminal angiotensin II on transport. Acute denervation decreased volume reabsorption (2.97 ± 0.14 vs. 1.30 ± 0.21 nl · mm−1 · min−1, P < 0.001). Although luminal 10−4 M enalaprilat decreased volume reabsorption in controls (2.97 ± 0.14 vs. 1.61 ± 0.26 nl · mm−1 · min−1, P < 0.001), it did not after acute denervation (1.30 ± 0.21 vs. 1.55 ± 0.19 nl · mm−1 · min−1). After chronic denervation, volume reabsorption was unchanged from sham controls (2.26 ± 0.28 vs. 2.70 ± 0.19 nl · mm−1 · min−1). Addition of luminal 10−4 M enalaprilat decreased volume reabsorption in sham control (2.70 ± 0.19 vs. 1.60 ± 0.10 nl · mm−1 · min−1, P < 0.05) but not with chronic denervation (2.26 ± 0.28 vs. 2.07 ± 0.20 nl · mm−1 · min−1). Addition of 10−8 M angiotensin II to the lumen does not affect transport due to the presence of luminal angiotensin II. However, addition of 10−8 M angiotensin II to the tubular lumen increased the volume reabsorption after both acute (1.30 ± 0.21 vs. 2.67 ± 0.18 nl · mm−1 · min−1, P < 0.05) and chronic denervation (2.26 ± 0.28 vs. 3.57 ± 0.44 nl · mm−1 · min−1, P < 0.01). These data indicate that renal denervation abolished the luminal enalaprilat-sensitive component of proximal tubule transport, which is consistent with the renal nerves playing a role in the modulation of the intraluminal angiotensin II mediated component of proximal tubule transport.


2009 ◽  
Vol 296 (6) ◽  
pp. R1889-R1896 ◽  
Author(s):  
Sylvia Michaels ◽  
Gabriela A. Eppel ◽  
Sandra L. Burke ◽  
Geoffrey A. Head ◽  
James Armitage ◽  
...  

We tested whether mild adiposity alters responsiveness of the kidney to activation of the renal sympathetic nerves. After rabbits were fed a high-fat or control diet for 9 wk, responses to reflex activation of renal sympathetic nerve activity (RSNA) with hypoxia and electrical stimulation of the renal nerves (RNS) were examined under pentobarbital anesthesia. Fat pad mass and body weight were, respectively, 74% and 6% greater in fat-fed rabbits than controls. RNS produced frequency-dependent reductions in renal blood flow, cortical and medullary perfusion, glomerular filtration rate, urine flow, and sodium excretion and increased renal plasma renin activity (PRA) overflow. Responses of sodium excretion and medullary perfusion were significantly enhanced by fat feeding. For example, 1 Hz RNS reduced sodium excretion by 79 ± 4% in fat-fed rabbits and 46 ± 13% in controls. RNS (2 Hz) reduced medullary perfusion by 38 ± 11% in fat-fed rabbits and 9 ± 4% in controls. Hypoxia doubled RSNA, increased renal PRA overflow and medullary perfusion, and reduced urine flow and sodium excretion, without significantly altering mean arterial pressure (MAP) or cortical perfusion. These effects were indistinguishable in fat-fed and control rabbits. Neither MAP nor PRA were significantly greater in conscious fat-fed than control rabbits. These observations suggest that mild excess adiposity can augment the antinatriuretic response to renal nerve activation by RNS, possibly through altered neural control of medullary perfusion. Thus, sodium retention in obesity might be driven not only by increased RSNA, but also by increased responsiveness of the kidney to RSNA.


1986 ◽  
Vol 250 (2) ◽  
pp. F322-F328 ◽  
Author(s):  
C. R. Silva-Netto ◽  
R. H. Jackson ◽  
R. E. Colindres

The role of the renal nerves in the natriuresis seen after cholinergic stimulation of the hypothalamus was studied in anesthetized rats treated with injection into the lateral hypothalamus (LH) of 1 microgram of carbamylcholine chloride (carbachol) in 1 microliter of 0.15 M NaCl or NaCl alone. Injection of carbachol exhibited diuresis and natriuresis both in acutely denervated kidneys (P less than 0.01) and in contralateral innervated kidneys (P less than 0.01) without changes in glomerular filtration rate (GFR) or renal plasma flow (RPF) (n = 10). Salt and water excretion was unchanged in 10 rats after injection of NaCl. Micropuncture studies in denervated kidneys showed that, after carbachol injection, tubular fluid-to-plasma inulin concentration ratio [(F/P)In] in the late proximal tubule fell from 1.86 +/- 0.08 to 1.64 +/- 0.07 (P less than 0.01) without changes in single-nephron GFR. In nine other carbachol-treated rats in which renal perfusion pressure was maintained low and constant, diuresis and natriuresis, although attenuated, were again observed both in denervated (P less than 0.01) and in contralateral innervated kidneys (P less than 0.05). In another group of 11 animals, efferent renal nerve activity (ERNA) was recorded before and after LH injection of carbachol and isotonic saline. ERNA was significantly depressed for 30 min, only after carbachol injection. Our results suggest that the renal nerves, although involved, are not essential for the natriuretic response after cholinergic stimulation of LH. By exclusion, other factors, presumably hormones, must contribute to the response.


1981 ◽  
Vol 51 (6) ◽  
pp. 1618-1624 ◽  
Author(s):  
J. Sadowski ◽  
R. Gellert ◽  
J. Kurkus ◽  
E. Portalaska

In conscious female dogs exercise-induced changes in the function of the innervated and denervated kidney were studied by clearance techniques. The animals were prepared for experiments by chronic unilateral renal denervation and surgical division of the urinary bladder to enable separate urine collection from each kidney. A 20-min run on a treadmill at a speed of 2.6 m/s significantly decreased urine flow, osmolar clearance, sodium excretion, as well as clearances of exogenous creatinine and p-aminohippurate in the denervated kidney only. In dogs running at 3.6 m/s renal hemodynamics decreased significantly and similarly for both kidneys, whereas the fall in renal excretion was virtually limited to the denervated kidney. As glomerular filtration rate (GFR) was falling during exercise, sodium excretion per 100 ml GFR tended to increase in the innervated kidney, in contrast to an expected slight fall on the denervated side. This indicated a defect of tubular sodium reabsorption of the innervated kidney. On the whole, the data do not support an important mediatory role of renal nerves in the mechanism of renal function changes during exercise.


2002 ◽  
Vol 282 (2) ◽  
pp. R603-R610 ◽  
Author(s):  
Rohit Ramchandra ◽  
Carolyn J. Barrett ◽  
Sarah-Jane Guild ◽  
Simon C. Malpas

One method for discerning the role of the renal sympathetic nerves in the regulation of renal function has been to chronically denervate one kidney. One concern with this approach is that increased renal responsiveness to plasma levels of norepinephrine may develop over time. This may reduce the apparent magnitude of the effect of the renal nerves or indeed completely mask their effect. In the present experiment, we used the rabbit unilateral denervated kidney model to examine the acute renal blood flow responses to phenylephrine to determine if there were differences between the responses in chronically denervated kidneys compared with either intact or acutely denervated kidneys. In addition, we examined the responses in rabbits that had been made hypertensive using a continuous infusion of ANG II for 7 wk. We found that chronic denervation did not result in increased renal responsiveness to phenylephrine compared with either the intact or acutely denervated kidney, suggesting that differences in renal function between renal nerve-intact and -denervated kidneys observed in previous studies are unlikely to be confounded by supersensitivity. These results suggest that the unilateral denervated kidney model is a valid model to study the role of the renal nerves in the regulation of renal function.


1992 ◽  
Vol 70 (5) ◽  
pp. 733-734 ◽  
Author(s):  
J. Michael Wyss

The kidney is the most highly innervated peripheral organ, and both the excretory and endocrine functions of the kidney are regulated by renal nerve activity. The kidney plays a dominant role in body fluid homeostasis, blood ionic concentration, and pH and thereby contributes importantly to systemic blood pressure control. Early studies suggested that the neural-renal interactions were responsible only for short-term adjustments in renal function, but more recent studies indicate that the renal nerves may be a major contributor to chronic renal defects leading to established hypertension and (or) renal disease. The neural-renal interaction is also of considerable interest as a model to elucidate the interplay between the nervous system and peripheral organs, since there is abundant anatomical and physiological information characterizing the renal nerves. The investigator has easy access to the renal nerves and the neural influence on renal function is directly quantifiable both in vivo and in vitro. In this symposium that was presented at the 1990 annual convention of the Society for Neuroscience in St. Louis, Missouri, three prominent researchers evaluate the most recent progress in understanding the interplay between the nervous system and the kidney and explore how the results of these studies relate to the broader questions concerning the nervous system's interactions.First, Luciano Barajas examines the detailed anatomy of the intrarenal distribution of the efferent and afferent renal nerves along the nephron and vasculature, and he evaluates the physiological role of each of the discrete components of the innervation. His basic science orientation combined with his deep appreciation of the clinical consequence of the failure of neural-renal regulation enhances his discussion of the anatomy. Ulla C. Kopp discusses the role of the renorenal reflex, which alters renal responses following stimulation of the contralateral kidney. She also considers her recent findings that efferent renal nerve activity can directly modify sensory feedback to the spinal cord from the kidney. Finally, J. Michael Wyss examines the functional consequences of neural control of the kidney in health and disease. Although the nervous system has often been considered as only an acute regulator of visceral function, current studies into hypertension and renal disease suggest that neural-renal dysfunction may be an important contributor to chronic diseases.Together, these presentations examine most of the recent advances in the area of neural-renal interactions and point out how these data form a basis for future research into neuronal interactions with all visceral organs. The relative simplicity of the neural-renal interaction makes this system an important model with which to elucidate all neural-peripheral and neural-neural interactions.


1999 ◽  
Vol 276 (3) ◽  
pp. R790-R798 ◽  
Author(s):  
Ai-Ping Zou ◽  
Kasem Nithipatikom ◽  
Pin-Lan Li ◽  
Allen W. Cowley

This study determined the levels of adenosine in the renal medullary interstitium using microdialysis and fluorescence HPLC techniques and examined the role of endogenous adenosine in the control of medullary blood flow and sodium excretion by infusing the specific adenosine receptor antagonists or agonists into the renal medulla of anesthetized Sprague-Dawley rats. Renal cortical and medullary blood flows were measured using laser-Doppler flowmetry. Analysis of microdialyzed samples showed that the adenosine concentration in the renal medullary interstitial dialysate averaged 212 ± 5.2 nM, which was significantly higher than 55.6 ± 5.3 nM in the renal cortex ( n = 9). Renal medullary interstitial infusion of a selective A1antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 300 pmol ⋅ kg−1 ⋅ min−1, n = 8), did not alter renal blood flows, but increased urine flow by 37% and sodium excretion by 42%. In contrast, renal medullary infusion of the selective A2 receptor blocker 3,7-dimethyl-1-propargylxanthine (DMPX; 150 pmol ⋅ kg−1 ⋅ min−1, n = 9) decreased outer medullary blood flow (OMBF) by 28%, inner medullary blood flows (IMBF) by 21%, and sodium excretion by 35%. Renal medullary interstitial infusion of adenosine produced a dose-dependent increase in OMBF, IMBF, urine flow, and sodium excretion at doses from 3 to 300 pmol ⋅ kg−1 ⋅ min−1( n = 7). These effects of adenosine were markedly attenuated by the pretreatment of DMPX, but unaltered by DPCPX. Infusion of a selective A3receptor agonist, N 6-benzyl-5′-( N-ethylcarbonxamido)adenosine (300 pmol ⋅ kg−1 ⋅ min−1, n = 6) into the renal medulla had no effect on medullary blood flows or renal function. Glomerular filtration rate and arterial pressure were not changed by medullary infusion of any drugs. Our results indicate that endogenous medullary adenosine at physiological concentrations serves to dilate medullary vessels via A2 receptors, resulting in a natriuretic response that overrides the tubular A1 receptor-mediated antinatriuretic effects.


1980 ◽  
Vol 58 (5) ◽  
pp. 477-483 ◽  
Author(s):  
D. R. Wilson ◽  
M. Cusimano ◽  
U. Honrath

The role of the renal nerves in the altered sodium reabsorption which occurs during increased ureteral pressure was studied using clearance techniques in anaesthetized rats undergoing diuresis induced by isotonic saline infusion. In rats with a sham denervated kidney, an ipsilateral increase in ureteral pressure to 20 cm H2O resulted in a marked and significant decrease in sodium and water excretion, increased fractional sodium reabsorption, and increased urine osmolality with no significant change in glomerular filtration rate. A similar significant ipsilateral increase in tubular reabsorption of sodium occurred in rats with chronically denervated kidneys during increased ureteral pressure. The changes in tubular reabsorption were rapidly reversible after return of ureteral pressure to normal. These experiments indicate that enhanced tubular reabsorption of sodium during an ipsilateral increase in ureteral pressure is not mediated by increased renal nerve activity. During the antinatriuresis of increased ureteral pressure there was a decrease in the fractional reabsorption of sodium from the opposite normal kidney. The role of the renal nerves in this compensatory change in function in the opposite kidney was studied in two further groups of animals. The renal response to a contralateral increase in ureteral pressure was similar in denervated and sham-denervated kidneys. The results indicate that altered renal nerve activity, through ipsilateral or contralateral renorenal reflexes, is not responsible for the changes in tubular reabsorption of sodium which occur during increased ureteral pressure induced by partial ureteral obstruction.


Sign in / Sign up

Export Citation Format

Share Document