Daily rhythms in Fos activity in the rat ventrolateral preoptic area and midline thalamic nuclei

1998 ◽  
Vol 275 (5) ◽  
pp. R1620-R1626 ◽  
Author(s):  
Colleen M. Novak ◽  
Antonio A. Nunez

The present experiment investigated the expression of the nuclear phosphoprotein Fos over the 24-h light-dark cycle in regions of the rat brain related to sleep and vigilance, including the ventrolateral preoptic area (VLPO), the paraventricular thalamic nucleus (PVT), and the central medial thalamic nucleus (CMT). Immunocytochemistry for Fos, an immediate-early gene product used as an index of neuronal activity, was carried out on brain sections from rats perfused at zeitgeber time (ZT) 1, ZT 5, ZT 12.5, and ZT 17 (lights on ZT 0–ZT 12). The number of Fos-immunopositive (Fos+) cells in the VLPO was elevated at ZT 5 and 12.5 (i.e., during or just after the rest phase of the cycle). Fos+cell number increased at ZT 17 and ZT 1 in the PVT and CMT, 180° out of phase with the VLPO. A positive correlation was found between the numbers of Fos+ cells in the PVT and CMT, and Fos expression in each thalamic nucleus was negatively correlated with VLPO Fos+ cell number. The VLPO, PVT, and CMT may integrate circadian and homeostatic influences to regulate the sleep-wake cycle.

2000 ◽  
Vol 278 (5) ◽  
pp. R1267-R1274 ◽  
Author(s):  
Colleen M. Novak ◽  
Laura Smale ◽  
Antonio A. Nunez

Most mammals show daily rhythms in sleep and wakefulness controlled by the primary circadian pacemaker, the suprachiasmatic nucleus (SCN). Regardless of whether a species is diurnal or nocturnal, neural activity in the SCN and expression of the immediate-early gene product Fos increases during the light phase of the cycle. This study investigated daily patterns of Fos expression in brain areas outside the SCN in the diurnal rodent Arvicanthis niloticus. We specifically focused on regions related to sleep and arousal in animals kept on a 12:12-h light-dark cycle and killed at 1 and 5 h after both lights-on and lights-off. The ventrolateral preoptic area (VLPO), which contained cells immunopositive for galanin, showed a rhythm in Fos expression with a peak at zeitgeber time (ZT) 17 (with lights-on at ZT 0). Fos expression in the paraventricular thalamic nucleus (PVT) increased during the morning (ZT 1) but not the evening activity peak of these animals. No rhythm in Fos expression was found in the centromedial thalamic nucleus (CMT), but Fos expression in the CMT and PVT was positively correlated. A rhythm in Fos expression in the ventral tuberomammillary nucleus (VTM) was 180° out of phase with the rhythm in the VLPO. Furthermore, Fos production in histamine-immunoreactive neurons of the VTM cells increased at the light-dark transitions when A. niloticus show peaks of activity. The difference in the timing of the sleep-wake cycle in diurnal and nocturnal mammals may be due to changes in the daily pattern of activity in brain regions important in sleep and wakefulness such as the VLPO and the VTM.


2021 ◽  
Vol 234 ◽  
pp. 113357
Author(s):  
Joseph S. Lonstein ◽  
Thierry D. Charlier ◽  
Jodi L. Pawluski ◽  
Nadege Aigueperse ◽  
Maryse Meurisse ◽  
...  

2018 ◽  
Vol 128 (3) ◽  
pp. 875-884 ◽  
Author(s):  
Robert F. Dallapiazza ◽  
Kelsie F. Timbie ◽  
Stephen Holmberg ◽  
Jeremy Gatesman ◽  
M. Beatriz Lopes ◽  
...  

OBJECTIVEUltrasound can be precisely focused through the intact human skull to target deep regions of the brain for stereotactic ablations. Acoustic energy at much lower intensities is capable of both exciting and inhibiting neural tissues without causing tissue heating or damage. The objective of this study was to demonstrate the effects of low-intensity focused ultrasound (LIFU) for neuromodulation and selective mapping in the thalamus of a large-brain animal.METHODSTen Yorkshire swine (Sus scrofa domesticus) were used in this study. In the first neuromodulation experiment, the lemniscal sensory thalamus was stereotactically targeted with LIFU, and somatosensory evoked potentials (SSEPs) were monitored. In a second mapping experiment, the ventromedial and ventroposterolateral sensory thalamic nuclei were alternately targeted with LIFU, while both trigeminal and tibial evoked SSEPs were recorded. Temperature at the acoustic focus was assessed using MR thermography. At the end of the experiments, all tissues were assessed histologically for damage.RESULTSLIFU targeted to the ventroposterolateral thalamic nucleus suppressed SSEP amplitude to 71.6% ± 11.4% (mean ± SD) compared with baseline recordings. Second, we found a similar degree of inhibition with a high spatial resolution (∼ 2 mm) since adjacent thalamic nuclei could be selectively inhibited. The ventromedial thalamic nucleus could be inhibited without affecting the ventrolateral nucleus. During MR thermography imaging, there was no observed tissue heating during LIFU sonications and no histological evidence of tissue damage.CONCLUSIONSThese results suggest that LIFU can be safely used to modulate neuronal circuits in the central nervous system and that noninvasive brain mapping with focused ultrasound may be feasible in humans.


2021 ◽  
Author(s):  
Yue Liang ◽  
Wu Shi ◽  
Anfeng Xiang ◽  
Dandan Hu ◽  
Liecheng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document