scholarly journals Higher skeletal muscle protein synthesis and lower breakdown after chemotherapy in cachectic mice

2001 ◽  
Vol 281 (1) ◽  
pp. R133-R139 ◽  
Author(s):  
S. E. Samuels ◽  
A. L. Knowles ◽  
T. Tilignac ◽  
E. Debiton ◽  
J. C. Madelmont ◽  
...  

The influence of cancer cachexia and chemotherapy and subsequent recovery of skeletal muscle protein mass and turnover was investigated in mice. Cancer cachexia was induced using colon 26 adenocarcinoma, which is characteristic of the human condition, and can be cured with 100% efficacy using an experimental nitrosourea, cystemustine (C6H12CIN3O4S). Reduced food intake was not a factor in these studies. Three days after cachexia began, healthy and tumor-bearing mice were given a single intraperitoneal injection of cystemustine (20 mg/kg). Skeletal muscle mass in tumor-bearing mice was 41% lower ( P < 0.05) than in healthy mice 2 wk after cachexia began. Skeletal muscle wasting was mediated initially by decreased protein synthesis (−38%; P < 0.05) and increased degradation (+131%; P < 0.05); later wasting resulted solely from decreased synthesis (∼−54 to −69%; P < 0.05). Acute cytotoxicity of chemotherapy did not appear to have an important effect on skeletal muscle protein metabolism in either healthy or tumor-bearing mice. Recovery began 2 days after treatment; skeletal muscle mass was only 11% lower than in healthy mice 11 days after chemotherapy. Recovery of skeletal muscle mass was affected initially by decreased protein degradation (−80%; P < 0.05) and later by increased protein synthesis (+46 to +73%; P < 0.05) in cured compared with healthy mice. This study showed that skeletal muscle wasted from cancer cachexia and after chemotherapeutic treatment is able to generate a strong anabolic response by making powerful changes to protein synthesis and degradation.

2021 ◽  
Author(s):  
◽  
Brittany Franch ◽  

Cancer cachexia is defined as the unintentional loss of skeletal muscle mass with or without fat loss that cannot be reversed by conventional nutritional support. Cachexia occurs in ~20% of cancer patients. More specifically, 50% of lung cancer patients, the most common cancer worldwide, develop cachexia. Cachexia occurs most often in lung and gastrointestinal cancers, whereas breast and prostate have the lowest rate of cachexia. Cancer-induced cachexia disrupts skeletal muscle protein turnover (decreasing protein synthesis and increasing protein degradation). Skeletal muscle’s capacity for protein synthesis is highly sensitive to local and systemic stimuli that are controlled by mTORC1 and AMPK signaling. During cachexia, altered protein turnover is thought to occur through suppressed anabolic signaling via mTORC1, coinciding with the chronic activation of AMPK. While progress has been made in understanding some of the mechanisms underlying the suppressed anabolic signaling in cachectic muscle, gaps still remain in our understanding of muscle’s ability to respond to anabolic stimulus prior to cachexia development. The purpose of this study was to determine if cachexia progression disrupts the feeding regulation of AMPK signaling and if gp130 signaling and muscle contraction could regulate this process. Specific aim 1 examined the feeding regulation of skeletal muscle protein synthesis in pre-cachectic tumor bearing mice. Feeding increased muscle protein synthesis, while lowering AMPK signaling in pre-cachectic tumor bearing mice. Importantly, pre-cachectic tumor bearing mice have overall suppressed muscle protein synthesis independent of the fast or fed condition. Muscle specific AMPK loss was sufficient to improve the fasting suppression of muscle mTORC1 and protein synthesis in pre-cachectic tumor bearing mice. Specific aim 2 examined if muscle gp130 signaling regulates the feeding regulation of AMPK during cancer cachexia progression. Muscle gp130 loss lowered the fasting induction of AMPK in pre-cachectic tumor bearing mice without improving protein synthesis. Muscle gp130 loss did not alter the feeding regulation of muscle Akt/mTORC1 signaling and protein synthesis. Specific Aim 3 examined if an acute bout of muscle contractions could improve the muscle protein synthesis response to feeding during the progression of cachexia. Pre-cachectic tumor bearing mice exhibit suppressed protein synthesis in response low frequency electrical stimulation, and the inability to synergistically induce protein synthesis in response to feeding and contraction. In summary, pre-cachectic tumor bearing mice have lowered Akt/mTORC1 signaling and protein synthesis. Feeding can induce Akt/mTORC1 and protein synthesis and AMPK regulates the fasting suppression of protein synthesis in pre-cachectic tumor bearing mice. While gp130 loss reduces AMPK it is not sufficient to improve protein synthesis in pre-cachectic tumor bearing mice. The added protein synthesis response to feeding and contraction is blunted in pre-cachectic tumor bearing mice. These findings provide novel insight into the regulation of Akt/mTORC1 signaling and protein synthesis in response to feeding. Additionally, these studies highlight gp130’s regulation of AMPK prior to cachexia development, and the blunted anabolic muscle response to feeding and contraction in pre-cachectic tumor bearing mice. By understanding these intracellular signaling processes and perturbations prior to cachexia development, we will be able to elucidate potential therapeutic targets and treatment options to manipulate and prevent cancer cachexia.


2009 ◽  
Vol 106 (6) ◽  
pp. 2040-2048 ◽  
Author(s):  
René Koopman ◽  
Luc J. C. van Loon

Aging is accompanied by a progressive loss of skeletal muscle mass and strength, leading to the loss of functional capacity and an increased risk of developing chronic metabolic disease. The age-related loss of skeletal muscle mass is attributed to a disruption in the regulation of skeletal muscle protein turnover, resulting in an imbalance between muscle protein synthesis and degradation. As basal (fasting) muscle protein synthesis rates do not seem to differ substantially between the young and elderly, many research groups have started to focus on the muscle protein synthetic response to the main anabolic stimuli, i.e., food intake and physical activity. Recent studies suggest that the muscle protein synthetic response to food intake is blunted in the elderly. The latter is now believed to represent a key factor responsible for the age-related decline in skeletal muscle mass. Physical activity and/or exercise stimulate postexercise muscle protein accretion in both the young and elderly. However, the latter largely depends on the timed administration of amino acids and/or protein before, during, and/or after exercise. Prolonged resistance type exercise training represents an effective therapeutic strategy to augment skeletal muscle mass and improve functional performance in the elderly. The latter shows that the ability of the muscle protein synthetic machinery to respond to anabolic stimuli is preserved up to very old age. Research is warranted to elucidate the interaction between nutrition, exercise, and the skeletal muscle adaptive response. The latter is needed to define more effective strategies that will maximize the therapeutic benefits of lifestyle intervention in the elderly.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1596 ◽  
Author(s):  
Insaf Berrazaga ◽  
Jérôme Salles ◽  
Karima Laleg ◽  
Christelle Guillet ◽  
Véronique Patrac ◽  
...  

The mechanisms that are responsible for sarcopenia are numerous, but the altered muscle protein anabolic response to food intake that appears with advancing age plays an important role. Dietary protein quality needs to be optimized to counter this phenomenon. Blending different plant proteins is expected to compensate for the lower anabolic capacity of plant-based when compared to animal-based protein sources. The objective of this work was to evaluate the nutritional value of pasta products that were made from a mix of wheat semolina and faba bean, lentil, or split pea flour, and to assess their effect on protein metabolism as compared to dietary milk proteins in old rats. Forty-three old rats have consumed for six weeks isoproteic and isocaloric diets containing wheat pasta enriched with 62% to 79% legume protein (depending on the type) or milk proteins, i.e., casein or soluble milk proteins (SMP). The protein digestibility of casein and SMP was 5% to 14% higher than legume-enriched pasta. The net protein utilization and skeletal muscle protein synthesis rate were equivalent either in rats fed legume-enriched pasta diets or those fed casein diet, but lower than in rats fed SMP diet. After legume-enriched pasta intake, muscle mass, and protein accretion were in the same range as in the casein and SMP groups. Mixed wheat-legume pasta could be a nutritional strategy for enhancing the protein content and improving the protein quality, i.e., amino acid profile, of this staple food that is more adequate for maintaining muscle mass, especially for older individuals.


2010 ◽  
Vol 42 ◽  
pp. 76
Author(s):  
James White ◽  
Melissa Puppa ◽  
Kandy Valazquez ◽  
Shuichi Sato ◽  
John Baynes ◽  
...  

2010 ◽  
Vol 70 (1) ◽  
pp. 104-113 ◽  
Author(s):  
René Koopman

Ageing is accompanied by a progressive loss of skeletal muscle mass and strength, leading to the loss of functional capacity and an increased risk for developing chronic metabolic diseases such as diabetes. The age-related loss of skeletal muscle mass results from a chronic disruption in the balance between muscle protein synthesis and degradation. As basal muscle protein synthesis rates are likely not different between healthy young and elderly human subjects, it was proposed that muscles from older adults lack the ability to regulate the protein synthetic response to anabolic stimuli, such as food intake and physical activity. Indeed, the dose–response relationship between myofibrillar protein synthesis and the availability of essential amino acids and/or resistance exercise intensity is shifted down and to the right in elderly human subjects. This so-called ‘anabolic resistance’ represents a key factor responsible for the age-related decline in skeletal muscle mass. Interestingly, long-term resistance exercise training is effective as a therapeutic intervention to augment skeletal muscle mass, and improves functional performance in the elderly. The consumption of different types of proteins, i.e. protein hydrolysates, can have different stimulatory effects on muscle protein synthesis in the elderly, which may be due to their higher rate of digestion and absorption. Current research aims to elucidate the interactions between nutrition, exercise and the skeletal muscle adaptive response that will define more effective strategies to maximise the therapeutic benefits of lifestyle interventions in the elderly.


2015 ◽  
Vol 40 (12) ◽  
pp. 1233-1241 ◽  
Author(s):  
Brandon James Shad ◽  
Benoit Smeuninx ◽  
Philip James Atherton ◽  
Leigh Breen

Skeletal muscle mass plays a vital role in locomotion, whole-body metabolic health, and is a positive predictor of longevity. It is well established the mammalian target of rapamycin (mTOR) is a central regulator of skeletal muscle protein turnover. The pursuit to find novel nutrient compounds or functional food sources that possess the ability to activate mTOR and promote skeletal muscle protein accretion has been on going. Over the last decade, a key role has been proposed for the phospholipid phosphatidic acid (PA) in mTOR activation. Mechanical load-induced (i.e., resistance exercise) intramuscular PA can directly bind to and activate mTOR. In addition, PA provided exogenously in cell culture heightens mTOR activity, albeit indirectly. Thus, endogenously generated PA and exogenous provision of PA appear to act through distinct mechanisms that converge on mTOR and, potentially, may amplify muscle protein synthesis. In support of this notion, limited evidence from humans suggests that resistance exercise training combined with oral supplemental PA enhances strength gains and muscle hypertrophy. However, the precise mechanisms underpinning the augmented muscle remodelling response with supplemental PA remain elusive. In this review, we will critically examine available evidence from cell cultures and animal and human experimental models to provide an overview of the mechanisms through which endogenous and exogenous PA may act to promote muscle anabolism, and discuss the potential for PA as a therapeutic tool to maintain or restore skeletal muscle mass in the context of ageing and disease.


GeroScience ◽  
2021 ◽  
Author(s):  
Jessica Cegielski ◽  
Daniel J. Wilkinson ◽  
Matthew S. Brook ◽  
Catherine Boereboom ◽  
Bethan E. Phillips ◽  
...  

AbstractOptimising approaches for measuring skeletal muscle mass and turnover that are widely applicable, minimally invasive and cost effective is crucial in furthering research into sarcopenia and cachexia. Traditional approaches for measurement of muscle protein turnover require infusion of expensive, sterile, isotopically labelled tracers which limits the applicability of these approaches in certain populations (e.g. clinical, frail elderly). To concurrently quantify skeletal muscle mass and muscle protein turnover i.e. muscle protein synthesis (MPS) and muscle protein breakdown (MPB), in elderly human volunteers using stable-isotope labelled tracers i.e. Methyl-[D3]-creatine (D3-Cr), deuterium oxide (D2O), and Methyl-[D3]-3-methylhistidine (D3-3MH), to measure muscle mass, MPS and MPB, respectively. We recruited 10 older males (71 ± 4 y, BMI: 25 ± 4 kg.m2, mean ± SD) into a 4-day study, with DXA and consumption of D2O and D3-Cr tracers on day 1. D3-3MH was consumed on day 3, 24 h prior to returning to the lab. From urine, saliva and blood samples, and a single muscle biopsy (vastus lateralis), we determined muscle mass, MPS and MPB. D3-Cr derived muscle mass was positively correlated to appendicular fat-free mass (AFFM) estimated by DXA (r = 0.69, P = 0.027). Rates of cumulative myofibrillar MPS over 3 days were 0.072%/h (95% CI, 0.064 to 0.081%/h). Whole-body MPB over 6 h was 0.052 (95% CI, 0.038 to 0.067). These rates were similar to previous literature. We demonstrate the potential for D3-Cr to be used alongside D2O and D3-3MH for concurrent measurement of muscle mass, MPS, and MPB using a minimally invasive design, applicable for clinical and frail populations.


2020 ◽  
Vol 295 (51) ◽  
pp. 17441-17459
Author(s):  
Hawley E. Kunz ◽  
Jessica M. Dorschner ◽  
Taylor E. Berent ◽  
Thomas Meyer ◽  
Xuewei Wang ◽  
...  

Cancer cachexia is characterized by reductions in peripheral lean muscle mass. Prior studies have primarily focused on increased protein breakdown as the driver of cancer-associated muscle wasting. Therapeutic interventions targeting catabolic pathways have, however, largely failed to preserve muscle mass in cachexia, suggesting that other mechanisms might be involved. In pursuit of novel pathways, we used untargeted metabolomics to search for metabolite signatures that may be linked with muscle atrophy. We injected 7-week–old C57/BL6 mice with LLC1 tumor cells or vehicle. After 21 days, tumor-bearing mice exhibited reduced body and muscle mass and impaired grip strength compared with controls, which was accompanied by lower synthesis rates of mixed muscle protein and the myofibrillar and sarcoplasmic muscle fractions. Reductions in protein synthesis were accompanied by mitochondrial enlargement and reduced coupling efficiency in tumor-bearing mice. To generate mechanistic insights into impaired protein synthesis, we performed untargeted metabolomic analyses of plasma and muscle and found increased concentrations of two methylarginines, asymmetric dimethylarginine (ADMA) and NG-monomethyl-l-arginine, in tumor-bearing mice compared with control mice. Compared with healthy controls, human cancer patients were also found to have higher levels of ADMA in the skeletal muscle. Treatment of C2C12 myotubes with ADMA impaired protein synthesis and reduced mitochondrial protein quality. These results suggest that increased levels of ADMA and mitochondrial changes may contribute to impaired muscle protein synthesis in cancer cachexia and could point to novel therapeutic targets by which to mitigate cancer cachexia.


Sign in / Sign up

Export Citation Format

Share Document