scholarly journals The Effect of Cancer Cachexia Progression on the Feeding Regulation of Skeletal Muscle Protein Turnover

Author(s):  
◽  
Brittany Franch ◽  

Cancer cachexia is defined as the unintentional loss of skeletal muscle mass with or without fat loss that cannot be reversed by conventional nutritional support. Cachexia occurs in ~20% of cancer patients. More specifically, 50% of lung cancer patients, the most common cancer worldwide, develop cachexia. Cachexia occurs most often in lung and gastrointestinal cancers, whereas breast and prostate have the lowest rate of cachexia. Cancer-induced cachexia disrupts skeletal muscle protein turnover (decreasing protein synthesis and increasing protein degradation). Skeletal muscle’s capacity for protein synthesis is highly sensitive to local and systemic stimuli that are controlled by mTORC1 and AMPK signaling. During cachexia, altered protein turnover is thought to occur through suppressed anabolic signaling via mTORC1, coinciding with the chronic activation of AMPK. While progress has been made in understanding some of the mechanisms underlying the suppressed anabolic signaling in cachectic muscle, gaps still remain in our understanding of muscle’s ability to respond to anabolic stimulus prior to cachexia development. The purpose of this study was to determine if cachexia progression disrupts the feeding regulation of AMPK signaling and if gp130 signaling and muscle contraction could regulate this process. Specific aim 1 examined the feeding regulation of skeletal muscle protein synthesis in pre-cachectic tumor bearing mice. Feeding increased muscle protein synthesis, while lowering AMPK signaling in pre-cachectic tumor bearing mice. Importantly, pre-cachectic tumor bearing mice have overall suppressed muscle protein synthesis independent of the fast or fed condition. Muscle specific AMPK loss was sufficient to improve the fasting suppression of muscle mTORC1 and protein synthesis in pre-cachectic tumor bearing mice. Specific aim 2 examined if muscle gp130 signaling regulates the feeding regulation of AMPK during cancer cachexia progression. Muscle gp130 loss lowered the fasting induction of AMPK in pre-cachectic tumor bearing mice without improving protein synthesis. Muscle gp130 loss did not alter the feeding regulation of muscle Akt/mTORC1 signaling and protein synthesis. Specific Aim 3 examined if an acute bout of muscle contractions could improve the muscle protein synthesis response to feeding during the progression of cachexia. Pre-cachectic tumor bearing mice exhibit suppressed protein synthesis in response low frequency electrical stimulation, and the inability to synergistically induce protein synthesis in response to feeding and contraction. In summary, pre-cachectic tumor bearing mice have lowered Akt/mTORC1 signaling and protein synthesis. Feeding can induce Akt/mTORC1 and protein synthesis and AMPK regulates the fasting suppression of protein synthesis in pre-cachectic tumor bearing mice. While gp130 loss reduces AMPK it is not sufficient to improve protein synthesis in pre-cachectic tumor bearing mice. The added protein synthesis response to feeding and contraction is blunted in pre-cachectic tumor bearing mice. These findings provide novel insight into the regulation of Akt/mTORC1 signaling and protein synthesis in response to feeding. Additionally, these studies highlight gp130’s regulation of AMPK prior to cachexia development, and the blunted anabolic muscle response to feeding and contraction in pre-cachectic tumor bearing mice. By understanding these intracellular signaling processes and perturbations prior to cachexia development, we will be able to elucidate potential therapeutic targets and treatment options to manipulate and prevent cancer cachexia.

2001 ◽  
Vol 281 (1) ◽  
pp. R133-R139 ◽  
Author(s):  
S. E. Samuels ◽  
A. L. Knowles ◽  
T. Tilignac ◽  
E. Debiton ◽  
J. C. Madelmont ◽  
...  

The influence of cancer cachexia and chemotherapy and subsequent recovery of skeletal muscle protein mass and turnover was investigated in mice. Cancer cachexia was induced using colon 26 adenocarcinoma, which is characteristic of the human condition, and can be cured with 100% efficacy using an experimental nitrosourea, cystemustine (C6H12CIN3O4S). Reduced food intake was not a factor in these studies. Three days after cachexia began, healthy and tumor-bearing mice were given a single intraperitoneal injection of cystemustine (20 mg/kg). Skeletal muscle mass in tumor-bearing mice was 41% lower ( P < 0.05) than in healthy mice 2 wk after cachexia began. Skeletal muscle wasting was mediated initially by decreased protein synthesis (−38%; P < 0.05) and increased degradation (+131%; P < 0.05); later wasting resulted solely from decreased synthesis (∼−54 to −69%; P < 0.05). Acute cytotoxicity of chemotherapy did not appear to have an important effect on skeletal muscle protein metabolism in either healthy or tumor-bearing mice. Recovery began 2 days after treatment; skeletal muscle mass was only 11% lower than in healthy mice 11 days after chemotherapy. Recovery of skeletal muscle mass was affected initially by decreased protein degradation (−80%; P < 0.05) and later by increased protein synthesis (+46 to +73%; P < 0.05) in cured compared with healthy mice. This study showed that skeletal muscle wasted from cancer cachexia and after chemotherapeutic treatment is able to generate a strong anabolic response by making powerful changes to protein synthesis and degradation.


2010 ◽  
Vol 24 (6) ◽  
pp. 1306-1306
Author(s):  
Kyle L. Timmerman ◽  
Jessica L. Lee ◽  
Hans C. Dreyer ◽  
Shaheen Dhanani ◽  
Erin L. Glynn ◽  
...  

Abstract Objective: Our objective was to determine whether endothelial-dependent vasodilation is an essential mechanism by which insulin stimulates human skeletal muscle protein synthesis and anabolism. Subjects: Subjects were healthy young adults (n = 14) aged 31 ± 2 yr. Design: Subjects were studied at baseline and during local leg infusion of insulin alone (control, n = 7) or insulin plus the nitric oxide synthase inhibitor NG-monomethyl-l-arginine (L-NMMA, n = 7) to prevent insulin-induced vasodilation. Methods: We measured skeletal muscle protein metabolism with stable isotope tracers, blood flow with indocyanine green, capillary recruitment with contrast enhanced ultrasound, glucose metabolism with stable isotope tracers, and phosphorylation of proteins associated with insulin (Akt) and amino acid-induced mammalian target of rapamycin(mTOR) complex 1 (mTORC1) signaling (mTOR, S6 kinase 1, and eukaryotic initiation factor 4Ebinding protein 1) with Western blot analysis. Results: No basal differences between groups were detected. During insulin infusion, blood flow and capillary recruitment increased in the control (P &lt; 0.05) group only; Akt phosphorylation and glucose uptake increased in both groups (P &lt; 0.05), with no group differences; and mTORC1 signaling increased more in control (P &lt; 0.05) than in l-NMMA. Phenylalanine net balance increased (P &lt; 0.05) in both groups, but with opposite mechanisms: increased protein synthesis (basal, 0.051 ± 0.006%/h; insulin, 0.077 ± 0.008%/h; P &lt; 0.05) with no change in proteolysis in control and decreased proteolysis (P &lt; 0.05) with no change in synthesis (basal, 0.061 ± 0.004%/h; insulin, 0.050 ± 0.006%/h; P value not significant) in l-NMMA. Conclusions: Endothelial-dependent vasodilation and the consequent increase in nutritive flow and mTORC1 signaling, rather than Akt signaling, are fundamental mechanisms by which insulin stimulates muscle protein synthesis in humans. Additionally, these data underscore that insulin modulates skeletal muscle proteolysis according to its effects on nutritive flow.


2010 ◽  
Vol 42 ◽  
pp. 76
Author(s):  
James White ◽  
Melissa Puppa ◽  
Kandy Valazquez ◽  
Shuichi Sato ◽  
John Baynes ◽  
...  

2010 ◽  
Vol 95 (8) ◽  
pp. 3848-3857 ◽  
Author(s):  
Kyle L. Timmerman ◽  
Jessica L. Lee ◽  
Hans C. Dreyer ◽  
Shaheen Dhanani ◽  
Erin L. Glynn ◽  
...  

Objective: Our objective was to determine whether endothelial-dependent vasodilation is an essential mechanism by which insulin stimulates human skeletal muscle protein synthesis and anabolism. Subjects: Subjects were healthy young adults (n = 14) aged 31 ± 2 yr. Design: Subjects were studied at baseline and during local leg infusion of insulin alone (control, n = 7) or insulin plus the nitric oxide synthase inhibitor NG-monomethyl-l-arginine (l-NMMA, n = 7) to prevent insulin-induced vasodilation. Methods: We measured skeletal muscle protein metabolism with stable isotope tracers, blood flow with indocyanine green, capillary recruitment with contrast enhanced ultrasound, glucose metabolism with stable isotope tracers, and phosphorylation of proteins associated with insulin (Akt) and amino acid-induced mammalian target of rapamycin (mTOR) complex 1 (mTORC1) signaling (mTOR, S6 kinase 1, and eukaryotic initiation factor 4E-binding protein 1) with Western blot analysis. Results: No basal differences between groups were detected. During insulin infusion, blood flow and capillary recruitment increased in the control (P &lt; 0.05) group only; Akt phosphorylation and glucose uptake increased in both groups (P &lt; 0.05), with no group differences; and mTORC1 signaling increased more in control (P &lt; 0.05) than in l-NMMA. Phenylalanine net balance increased (P &lt; 0.05) in both groups, but with opposite mechanisms: increased protein synthesis (basal, 0.051 ± 0.006 %/h; insulin, 0.077 ± 0.008 %/h; P &lt; 0.05) with no change in proteolysis in control and decreased proteolysis (P &lt; 0.05) with no change in synthesis (basal, 0.061 ± 0.004 %/h; insulin, 0.050 ± 0.006 %/h; P value not significant) in l-NMMA. Conclusions: Endothelial-dependent vasodilation and the consequent increase in nutritive flow and mTORC1 signaling, rather than Akt signaling, are fundamental mechanisms by which insulin stimulates muscle protein synthesis in humans. Additionally, these data underscore that insulin modulates skeletal muscle proteolysis according to its effects on nutritive flow.


2009 ◽  
Vol 106 (4) ◽  
pp. 1374-1384 ◽  
Author(s):  
Micah J. Drummond ◽  
Hans C. Dreyer ◽  
Christopher S. Fry ◽  
Erin L. Glynn ◽  
Blake B. Rasmussen

In this review we discuss current findings in the human skeletal muscle literature describing the acute influence of nutrients (leucine-enriched essential amino acids in particular) and resistance exercise on muscle protein synthesis and mammalian target of rapamycin complex 1 (mTORC1) signaling. We show that essential amino acids and an acute bout of resistance exercise independently stimulate human skeletal muscle protein synthesis. It also appears that ingestion of essential amino acids following resistance exercise leads to an even larger increase in the rate of muscle protein synthesis compared with the independent effects of nutrients or muscle contraction. Until recently the cellular mechanisms responsible for controlling the rate of muscle protein synthesis in humans were unknown. In this review, we highlight new studies in humans that have clearly shown the mTORC1 signaling pathway is playing an important regulatory role in controlling muscle protein synthesis in response to nutrients and/or muscle contraction. We propose that essential amino acid ingestion shortly following a bout of resistance exercise is beneficial in promoting skeletal muscle growth and may be useful in counteracting muscle wasting in a variety of conditions such as aging, cancer cachexia, physical inactivity, and perhaps during rehabilitation following trauma or surgery.


1997 ◽  
Vol 82 (3) ◽  
pp. 807-810 ◽  
Author(s):  
Arny A. Ferrando ◽  
Kevin D. Tipton ◽  
Marcas M. Bamman ◽  
Robert R. Wolfe

Ferrando, Arny A., Kevin D. Tipton, Marcas M. Bamman, and Robert R. Wolfe. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J. Appl. Physiol. 82(3): 807–810, 1997.—Spaceflight results in a loss of lean body mass and muscular strength. A ground-based model for microgravity, bed rest, results in a loss of lean body mass due to a decrease in muscle protein synthesis (MPS). Resistance training is suggested as a proposed countermeasure for spaceflight-induced atrophy because it is known to increase both MPS and skeletal muscle strength. We therefore hypothesized that scheduled resistance training throughout bed rest would ameliorate the decrease in MPS. Two groups of healthy volunteers were studied during 14 days of simulated microgravity. One group adhered to strict bed rest (BR; n = 5), whereas a second group engaged in leg resistance exercise every other day throughout bed rest (BREx; n = 6). MPS was determined directly by the incorporation of infusedl-[ ring-13C6]phenylalanine into vastus lateralis protein. After 14 days of bed rest, MPS in the BREx group did not change and was significantly greater than in the BR group. Thus moderate-resistance exercise can counteract the decrease in MPS during bed rest.


Sign in / Sign up

Export Citation Format

Share Document