scholarly journals Sodium intake but not renal nerves attenuates renal venous pressure-induced changes in renal hemodynamics in rats

2018 ◽  
Vol 315 (3) ◽  
pp. F644-F652 ◽  
Author(s):  
Xiaohua Huang ◽  
Shereen M. Hamza ◽  
Wenqing Zhuang ◽  
William A. Cupples ◽  
Branko Braam

Increased central venous pressure and renal venous pressure (RVP) are associated with worsening of renal function in acute exacerbation of congestive heart failure. We tested whether an acute isolated elevation of RVP in one kidney leads to ipsilateral renal vasoconstriction and decreased glomerular filtration rate (GFR) and whether this depends on dietary salt intake or activation of renal nerves. Male Lewis rats received a normal (1% NaCl, NS) or high-salt (6% NaCl) diet for ≥14 days before the acute experiment. Rats were then randomized into the following three groups: time control and RVP elevation to either 10 or 20 mmHg to assess heart rate, renal blood flow (RBF), and GFR. To increase RVP, the left renal vein was partially occluded for 120 min. To determine the role of renal nerves, surgical denervation was conducted in rats on both diets. Renal sympathetic nerve activity (RSNA) was additionally recorded in a separate group of rats. Increasing RVP to 20 mmHg decreased ipsilateral RBF (7.5 ± 0.4 to 4.1 ± 0.7 ml/min, P < 0.001), renal vascular conductance (0.082 ± 0.006 to 0.060 ± 0.011 ml·min−1·mmHg−1, P < 0.05), and GFR (1.28 ± 0.08 to 0.40 ± 0.13 ml/min, P < 0.05) in NS rats. The reduction was abolished by high-salt diet but not by renal denervation. Furthermore, a major increase of RVP (1.6 ± 0.8 to 24.7 ± 1.2 mmHg) immediately suppressed RSNA and decreased heart rate ( P < 0.05), which points to suppression of both local and systemic sympathetic activity. Taken together, acute elevated RVP induces renal vasoconstriction and decreased GFR, which is more likely to be mediated via the renin-angiotensin system than via renal nerves.

2003 ◽  
Vol 284 (6) ◽  
pp. H2302-H2310 ◽  
Author(s):  
Frédéric Jacob ◽  
Pilar Ariza ◽  
John W. Osborn

The present study was designed to test the hypothesis that renal nerves chronically modulate arterial pressure (AP) under basal conditions and during changes in dietary salt intake. To test this hypothesis, continuous telemetric recording of AP in intact (sham) and renal denervated (RDNX) Sprague-Dawley rats was performed and the effect of increasing and decreasing dietary salt intake on AP was determined. In protocol 1, 24-h AP, sodium, and water balances were measured in RDNX ( n = 11) and sham ( n = 9) rats during 5 days of normal (0.4% NaCl) and 10 days of high (4.0% NaCl) salt intake, followed by a 3-day recovery period (0.4% NaCl). Protocol 2 was similar with the exception that salt intake was decreased to 0.04% NaCl for 10 days after the 5-day period of normal salt (0.04% NaCl) intake (RDNX; n = 6, sham; n = 5). In protocol 1, AP was lower in RDNX (91 ± 1 mmHg) compared with sham (101 ± 2 mmHg) rats during the 5-day 0.4% NaCl control period. During the 10 days of high salt intake, AP increased <5 mmHg in both groups so that the difference between sham and RDNX rats remained constant. In protocol 2, AP was also lower in RDNX (93 ± 2 mmHg) compared with sham (105 ± 4 mmHg) rats during the 5-day 0.4% NaCl control period, and AP did not change in response to 10 days of a low-salt diet in either group. Overall, there were no between-group differences in sodium or water balance in either protocol. We conclude that renal nerves support basal levels of AP, irrespective of dietary sodium intake in normal rats.


2002 ◽  
Vol 283 (1) ◽  
pp. H353-H363 ◽  
Author(s):  
Francis A. Sylvester ◽  
David W. Stepp ◽  
Jefferson C. Frisbee ◽  
Julian H. Lombard

Rats were fed a low-salt (LS; 0.4% NaCl) or high-salt (HS; 4.0% NaCl) diet for 3 days, and the responses of isolated cerebral arteries to acetylcholine (ACh), the nitric oxide (NO)-dependent dilator bradykinin, and the NO donor 6-(2-hydroxy-1-methyl-2-nitrosohydrazino)- N-methyl-1-hex-anamine (NOC-9) were determined. ACh-induced vasodilation and NO release, assessed with the fluorescent NO indicator 4,5-diaminofluorescein (DAF-2) diacetate, were eliminated with the HS diet. Inhibition of cyclooxygenase, cytochrome P-450 epoxygenase, and acetylcholinesterase did not alter ACh responses. Bradykinin and NOC-9 caused a similar dilation in cerebral arteries of all groups. Arteries from animals on LS or HS diets exhibited similar levels of basal superoxide (O[Formula: see text]) production, assessed by dihydroethidine fluorescence, and ACh responses were unaffected by O[Formula: see text] scavengers. Muscarinic type 3 receptor expression was unaffected by dietary salt intake. These results indicate that 1) a HS diet attenuates ACh reactivity in cerebral arteries by inhibiting NO release, 2) this attenuation is not due to production of a cyclooxygenase-derived vasoconstrictor or elevated O[Formula: see text] levels, and 3) alteration(s) in ACh signaling are located upstream from NO synthase.


1987 ◽  
Vol 252 (2) ◽  
pp. H402-H409 ◽  
Author(s):  
E. Miyajima ◽  
R. D. Bunag

To determine whether baroreflex impairment progresses in hypertensive Dahl rats, we recorded reflex responses to drug-induced changes in blood pressure in hypertension-sensitive (DS) and hypertension-resistant (DR) rats maintained on low- or high-salt diets for 7 wk. Chronotropic responses, manifested as either bradycardia for phenylephrine or tachycardia for sodium nitroprusside, were always smaller in awake DS rats on high-salt diet than in any others. When the same rats were later anesthetized, related changes in afferent aortic and efferent splanchnic nerve activity were similarly reduced. Regardless of dietary salt intake, reflex bradycardia elicited by electrical stimulation of aortic nerve afferents was also weaker in DS than in DR rats, but attendant decreases in mean aortic pressure and splanchnic nerve activity did not differ significantly. These results are compatible with an impairment of afferent and central components of the reflex arc. Even though exact sites of dysfunction were not identified, our findings suggest that in hypertensive DS rats high-salt diets may aggravate baroreflex impairment, at least in part, by acting centrally.


2013 ◽  
Vol 81 (6) ◽  
pp. 2258-2267 ◽  
Author(s):  
Jennifer A. Gaddy ◽  
Jana N. Radin ◽  
John T. Loh ◽  
Feng Zhang ◽  
M. Kay Washington ◽  
...  

ABSTRACTPersistent colonization of the human stomach withHelicobacter pyloriis a risk factor for gastric adenocarcinoma, andH. pylori-induced carcinogenesis is dependent on the actions of a bacterial oncoprotein known as CagA. Epidemiological studies have shown that high dietary salt intake is also a risk factor for gastric cancer. To investigate the effects of a high-salt diet, we infected Mongolian gerbils with a wild-type (WT)cagA+H. pyloristrain or an isogeniccagAmutant strain and maintained the animals on a regular diet or a high-salt diet. At 4 months postinfection, gastric adenocarcinoma was detected in 100% of the WT-infected/high-salt-diet animals, 58% of WT-infected/regular-diet animals, and none of the animals infected with thecagAmutant strain (P< 0.0001). Among animals infected with the WT strain, those fed a high-salt diet had more severe gastric inflammation, higher gastric pH, increased parietal cell loss, increased gastric expression of interleukin 1β (IL-1β), and decreased gastric expression of hepcidin and hydrogen potassium ATPase (H,K-ATPase) compared to those on a regular diet. Previous studies have detected upregulation of CagA synthesis in response to increased salt concentrations in the bacterial culture medium, and, concordant with thein vitroresults, we detected increasedcagAtranscriptionin vivoin animals fed a high-salt diet compared to those on a regular diet. Animals infected with thecagAmutant strain had low levels of gastric inflammation and did not develop hypochlorhydria. These results indicate that a high-salt diet potentiates the carcinogenic effects ofcagA+H. pyloristrains.


2005 ◽  
Vol 288 (4) ◽  
pp. H1557-H1565 ◽  
Author(s):  
Jingli Wang ◽  
Richard J. Roman ◽  
John R. Falck ◽  
Lourdes de la Cruz ◽  
Julian H. Lombard

This study investigated the role of changes in the expression of the cytochrome P-450 4A (CYP450-4A) enzymes that produce 20-hydroxyeicosatetraenoic acid (20-HETE) in modulating the responses of rat mesenteric resistance arteries to norepinephrine (NE) and reduced Po2 after short-term (3-day) changes in dietary salt intake. The CYP450-4A2, -4A3, and -4A8 isoforms were all detected by RT-PCR in arteries obtained from rats fed a high-salt (HS, 4% NaCl) diet, whereas only the CYP450-4A3 isoform was detected in vessels from rats fed a low-salt (LS, 0.4% NaCl) diet. Expression of the 51-kDa CYP450-4A protein was significantly increased by a HS diet. Inhibiting 20-HETE synthesis with 30 μM N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) reduced the vasoconstrictor response to NE in arteries obtained from rats fed either a LS or HS diet, but NE sensitivity after DDMS treatment was significantly lower in vessels from rats on a HS diet. DDMS treatment also restored the vasodilator response to reduced Po2 that was impaired in arteries from rats on a HS diet. These findings suggest that 1) a HS diet increases the expression of CYP450-4A enzymes in the mesenteric vasculature, 2) 20-HETE contributes to the vasoconstrictor response to NE in mesenteric resistance arteries, 3) the contribution of 20-HETE to the vasoconstrictor response to NE is greater in rats fed a HS diet than in rats fed a LS diet, and 4) upregulation of the production of 20-HETE contributes to the impaired dilation of mesenteric resistance arteries in response to hypoxia in rats fed a HS diet.


Cardiology ◽  
2015 ◽  
Vol 130 (4) ◽  
pp. 242-248 ◽  
Author(s):  
Yang Wang ◽  
Dan Wang ◽  
Chao Chu ◽  
Jian-Jun Mu ◽  
Man Wang ◽  
...  

Objective: The aim of our study was to assess the effects of altered salt and potassium intake on urinary renalase and serum dopamine levels in humans. Methods: Forty-two subjects (28-65 years of age) were selected from a rural community of northern China. All subjects were sequentially maintained on a low-salt diet for 7 days (3.0 g/day of NaCl), a high-salt diet for an additional 7 days (18.0 g/day of NaCl), and a high-salt diet with potassium supplementation for a final 7 days (18.0 g/day of NaCl + 4.5 g/day of KCl). Results: Urinary renalase excretions were significantly higher during the high-salt diet intervention than during the low-salt diet. During high-potassium intake, urinary renalase excretions were not significantly different from the high-salt diet, whereas they were significantly higher than the low-salt levels. Serum dopamine levels exhibited similar trends across the interventions. Additionally, a significant positive relationship was observed between the urine renalase and serum dopamine among the different dietary interventions. Also, 24-hour urinary sodium excretion positively correlated with urine renalase and serum dopamine in the whole population. Conclusions: The present study indicates that dietary salt intake and potassium supplementation increase urinary renalase and serum dopamine levels in Chinese subjects.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
J.R Choi

Abstract   Excessive dietary salt intake is associated with an increased risk of hypertension. Salt sensitivity, i.e., an elevation in blood pressure in response to high dietary salt intake, has been associated with a high risk of cardiovascular disease and mortality. We investigated whether a causal association exists between dietary sodium intake and hypertension risk using Mendelian randomization (MR). We performed an MR study using data from a large genome-wide association study comprising 15,034 Korean adults in a community-based cohort study. A total of 1,282 candidate single nucleotide polymorphisms associated with dietary sodium intake, such as rs2960306, rs4343, and rs1937671, were selected as instrumental variables. The inverse variance weighted method was used to assess the evidence for causality. Higher dietary sodium intake was associated with salt-sensitive hypertension risk. The variants of SLC8E1 rs2241543 and ADD1 rs16843589 were strongly associated with increased blood pressure. In the logistic regression model, after adjusting for age, gender, smoking, drinking, exercise, and body mass index, the GRK4 rs2960306TT genotype was inversely associated with hypertension risk (OR = 0.356, 95% CI = 0.236–0.476). However, the 2350GG genotype (ACE rs4343) exhibited a 2.11-fold increased hypertension risk (OR = 2.114, 95% CI = 2.004–2.224) relative to carriers of the 2350AA genotype, after adjusting for confounders. MR analysis revealed that the odds ratio for hypertension per 1 mg/day increment of dietary sodium intake was 2.24 in participants with the PRKG1 rs12414562 AA genotype. Our findings suggest that dietary sodium intake may be causally associated with hypertension risk. Funding Acknowledgement Type of funding source: Public Institution(s). Main funding source(s): This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2017R1D1A3B03034119, 2014M3C9A3064552), and the KRIBB Initiative program. This research was also supported by the Medical Research Center Program (2017R1A5A2015369). This work was supported (in part) by the Yonsei University Research Fund 2017. Bioresources for this study were provided by the National Biobank of Korea and the Centers for Disease Control and Prevention, Republic of Korea (2017-009).


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 279 ◽  
Author(s):  
Paola Iaccarino Idelson ◽  
Lanfranco D’Elia ◽  
Giulia Cairella ◽  
Paola Sabino ◽  
Luca Scalfi ◽  
...  

Background and aim: Excess sodium intake is a recognised causal factor of hypertension and its cardiovascular complications; there is however a lack of practical instruments to assess and monitor the level of knowledge and behaviour about dietary salt intake and to relate these factors to the population general dietary habits. Methods and Results: A self-administered questionnaire was developed to assess the salt and health related knowledge and behaviour of the Italian population through an online survey. A sample of 11,618 Italian participants completed the questionnaire. The degree of knowledge and the reported behaviour about salt intake were both found to be related to age, gender, home region, level of education and occupation. There was a significant interrelation between salt knowledge and behaviour and both were significantly and directly related to the degree of adherence to a Mediterranean-like dietary pattern. A hierarchical evaluation was also made of the relevance of any single question to the overall assessment of knowledge and behaviour about salt intake. Conclusions: The study population overall appeared to have a decent level of knowledge about salt, but a less satisfactory behaviour. Our findings point to social inequalities and young age as the main factors having a negative impact on knowledge and behaviour about salt intake as part of generally inadequate dietary habits. The degrees of knowledge and behaviour were significantly and directly interrelated, confirming that improving knowledge is a key step for behavioural changes, and suggesting that educational campaigns are crucial for the implementation of good practices in nutrition.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Sean D Stocker ◽  
Megan M Wenner ◽  
William B Farquhar

Observational cohort studies suggest that severe salt restriction increases cardiovascular morbidity/mortality, and the relationship between cardiovascular morbidity and dietary salt intake resembles a J-shaped curve. A high salt diet exaggerates sympathetic nerve activity (SNA) and arterial blood pressure (ABP) responses to several cardiovascular reflexes in salt-resistant animals. This study assessed whether salt restriction also exaggerates cardiovascular reflex responses and sensitizes central autonomic networks. To test this hypothesis, male Sprague-Dawley rats were fed low (0.01% NaCl), normal (0.1% NaCl), and high (4.0% NaCl) salt diet for 14-21 days. Baseline mean ABP was not different across groups (low: 104±4, normal: 107±4, high: 107±4mmHg). Activation of sciatic afferents (1ms pulse, 500uA, 5s duration, 2-20Hz) produced significantly greater increases in renal SNA (5Hz; low: 196±12, normal: 136±9, high: 177±8%, n=8, P<0.05) and ABP (5Hz; low: 29±3, normal: 16±1, high: 24±2 mmHg, n=8, P<0.05) of rats fed low and high versus normal NaCl diets. Activation of the aortic depressor nerve (2ms pulse, 500uA, 15s duration, 2-20Hz) produced significantly greater decreases in renal SNA (5Hz; low: -55±9, normal: -34±8, high: -63±13%, n=7-8, P<0.05) and ABP (5Hz; low: -31±3, normal: -15±5, high: -32±5 mmHg, n=7-8, P<0.05) of rats fed low and high versus normal NaCl diets. To test whether dietary salt intake sensitized central sympathetic circuits, microinjection of L-glutamate (0.1-1nmol, 30nL) in the rostral ventrolateral medulla produced significantly greater increases in renal SNA (0.1nmol; low: 212±15, normal: 149±8, high: 183±17%, n=7-8, P<0.05) and ABP (0.1Hz; low: 20±2, normal: 12±2, high: 22±2 mmHg, n=7-8, P<0.05) of rats fed low and high versus normal NaCl diets. Finally, rats fed low or high NaCl versus normal NaCl diets displayed exaggerated cardiovascular responses to cage switch or mild restraint and increased 24-h blood pressure variability. The present findings show that severe salt restriction and excess dietary salt intake exaggerate sympathetic and cardiovascular responses, and may be explained by a parallel change in the sensitivity of central autonomic networks to resemble a J-shaped curve.


1999 ◽  
Vol 276 (6) ◽  
pp. R1749-R1757 ◽  
Author(s):  
Osamu Ito ◽  
Richard J. Roman

We recently reported that an enzyme of the cytochrome P-450 4A family is expressed in the glomerulus, but there is no evidence that 20-hydroxyeicosatetraenoic acid (20-HETE) can be produced by this tissue. The purpose of present study was to determine whether glomeruli isolated from the kidney of rats can produce 20-HETE and whether the production of this metabolite is regulated by nitric oxide (NO) and dietary salt intake. Isolated glomeruli produced 20-HETE, dihydroxyeicosatrienoic acids, and 12-hydroxyeicosatetraenoic acid (4.13 ± 0.38, 4.20 ± 0.38, and 2.10 ± 0.20 pmol ⋅ min−1⋅ mg protein−1, respectively) when incubated with arachidonic acid (10 μM). The formation of 20-HETE was dependent on the availability of NADPH and the[Formula: see text] of the incubation medium. The formation of 20-HETE was inhibited by NO donors in a concentration-dependent manner. The production of 20-HETE was greater in glomeruli isolated from the kidneys of rats fed a low-salt diet than in kidneys of rats fed a high-salt diet (5.67 ± 0.32 vs. 2.83 ± 0.32 pmol ⋅ min−1⋅ mg protein−1). Immunoblot experiments indicated that the expression of P-450 4A protein in glomeruli from the kidneys of rats fed a low-salt diet was sixfold higher than in kidneys of rats fed a high-salt diet. These results indicate that arachidonic acid is primarily metabolized to 20-HETE and dihydroxyeicosatrienoic acids in glomeruli and that glomerular P-450 activity is modulated by NO and dietary salt intake.


Sign in / Sign up

Export Citation Format

Share Document