scholarly journals Effect of metabolic and respiratory acidosis on intracellular calcium in osteoblasts

2010 ◽  
Vol 299 (2) ◽  
pp. F418-F425 ◽  
Author(s):  
Kevin K. Frick ◽  
David A. Bushinsky

In vivo, metabolic acidosis {decreased pH from decreased bicarbonate concentration ([HCO3−])} increases urine calcium (Ca) without increased intestinal Ca absorption, resulting in a loss of bone Ca. Conversely, respiratory acidosis [decreased pH from increased partial pressure of carbon dioxide (Pco2)] does not appreciably alter Ca homeostasis. In cultured bone, chronic metabolic acidosis (Met) significantly increases cell-mediated net Ca efflux while isohydric respiratory acidosis (Resp) does not. The proton receptor, OGR1, appears critical for cell-mediated, metabolic acid-induced bone resorption. Perfusion of primary bone cells or OGR1-transfected Chinese hamster ovary (CHO) cells with Met induces transient peaks of intracellular Ca (Cai). To determine whether Resp increases Cai, as does Met, we imaged Cai in primary cultures of bone cells. pH for Met = 7.07 ([HCO3−] = 11.8 mM) and for Resp = 7.13 (Pco2 = 88.4 mmHg) were similar and lower than neutral (7.41). Both Met and Resp induced a marked, transient increase in Cai in individual bone cells; however, Met stimulated Cai to a greater extent than Resp. We used OGR1-transfected CHO cells to determine whether OGR1 was responsible for the greater increase in Cai in Met than Resp. Both Met and Resp induced a marked, transient increase in Cai in OGR1-transfected CHO cells; however, in these cells Met was not different than Resp. Thus, the greater induction of Cai by Met in primary bone cells is not a function of OGR1 alone, but must involve H+ receptors other than OGR1, or pathways sensitive to Pco2, HCO3−, or total CO2 that modify the effect of H+ in primary bone cells.

1989 ◽  
Vol 256 (5) ◽  
pp. F836-F842 ◽  
Author(s):  
D. A. Bushinsky

In vivo chronic metabolic acidosis induces bone mineral dissolution. Whether the dissolution is due to alterations in physicochemical factors alone, as in acute metabolic acidosis, or requires participation of bone cells is not clear. The effect of chronic respiratory acidosis on bone has also not been established. To determine the effects of chronic metabolic and respiratory acidosis on net calcium flux from bone, we cultured live and dead neonatal mouse calvariae for 99 h in control medium or in medium acidified (pH approximately equal to 7.1) either by lowering the bicarbonate concentration (Met) or by increasing the PCO2 (Resp). We measured net calcium flux (JCa) over 0-48, 48-96, and 96-99 h. Over the first 48 h, there was greater net calcium efflux from live and dead Met than from both Resp groups. All four acidic groups had greater net calcium efflux than controls. Over the last 51 h of the chronic 99 h culture, there was net calcium efflux only from live Met (JCa = 285 +/- 129 nmol.bone-1.3 h-1) and not from any of the other groups (live control, JCa = -183 +/- 24; live Resp, JCa = -110 +/- 22; dead control, JCa = -256 +/- 12; dead Met, JCa = 11 +/- 78; dead Resp, JCa = -27 +/- 47; each P less than 0.02 vs. live Met). There is net calcium efflux from live cultured neonatal mouse calvariae during chronic metabolic, but not respiratory, acidosis. During chronic acidosis, decreased medium bicarbonate, and not just a fall in pH, is necessary to enhance net calcium efflux from live bone.


1991 ◽  
Vol 11 (6) ◽  
pp. 3125-3131
Author(s):  
B J Rollins ◽  
M E Sunday

The early growth response gene JE encodes a monocyte chemoattractant, MCP-1. The JE/MCP-1 protein attracts and stimulates human monocytes and induces monocyte-mediated inhibition of tumor cell growth in vitro. Expression of human or murine JE/MCP-1 in Chinese hamster ovary (CHO) cells completely suppressed their ability to form tumors in nude mice. Coinjection of JE/MCP-1-expressing cells with nonexpressing CHO cells or with HeLa cells also prevented tumor formation. Since JE/MCP-1 expression had no discernible effect on the tranformed phenotype of these cells in vitro, the suppressive effect depends on host animal factors. These factors are likely to be components of the inflammatory response, because JE/MCP-1-expressing cells elicited a predominantly monocytic infiltrate at the site of injection. Our results suggest that JE/MCP-1 protein may be useful in cancer therapy.


1995 ◽  
Vol 307 (3) ◽  
pp. 791-797 ◽  
Author(s):  
D C A Neville ◽  
R A Field ◽  
M A J Ferguson

Several hydrophobic glycosides of N-acetylglucosamine (GlcNAc) served as primers for polylactosamine synthesis when added to Chinese hamster ovary (CHO) cells. The modified glycosides, containing one to six lactosamine repeats in linear array, were sialylated and secreted into the culture medium. The relative efficiencies of the glycosides to serve as primers were dependent on the nature of the aglycone and on the anomeric configuration of the GlcNAc residue. The same compounds were tested for their effects on glycolipid synthesis in CHO cells. All of the beta-glycosides significantly inhibited the synthesis of the lactoseries glycolipid GM3 whereas the alpha-glycoside was inactive. The compound GlcNAc alpha 1-O-benzyl- was the most efficient primer of polylactosamine synthesis and had no effect on glycolipid synthesis. This compound may have potential for the assay of the polylactosamine synthetic capacity of living cells.


1977 ◽  
Vol 73 (3) ◽  
pp. 601-615 ◽  
Author(s):  
RR Gould ◽  
GG Borisy

The structure and function of the centrosomes from Chinese hamster ovary (CHO) cells were investigated by electron microscopy of negatively stained wholemount preparations of cell lysates. Cells were trypsinized from culture dishes, lysed with Triton X-100, sedimented onto ionized, carbon-coated grids, and negatively stained with phosphotungstate. The centrosomes from both interphase and dividing cells consisted of pairs of centrioles, a fibrous pericentriolar material, and a group of virus-like particles which were characteristic of the CHO cells and which served as markers for the pericentriolar material. Interphase centrosomes anchored up to two dozen microtubules when cells were lysed under conditions which preserved native microtubules. When Colcemid-blocked mitotic cells, initially devoid of microtubules, were allowed to recover for 10 min, microtubules formed at the pericentriolar material, but not at the centrioles. When lysates of Colcemid-blocked cells were incubated in vitro with micotubule protein purified from porcine brain tissue, up to 250 microtubules assembled at the centrosomes, similar to the number of microtubules that would normally form at the centrosome during cell division. A few microtubules could also be assembled in vitro onto the ends of isolated centrioles from which the pericentriolar material had been removed, forming characteristic axoneme- like bundles. In addition, microtubules; were assembled onto fragments of densely staining, fibrous material which was tentatively identified as periocentriolar material by its association of CHO can initiate and anchor microtubules both in vivo and in vitro.


1996 ◽  
Vol 183 (3) ◽  
pp. 991-999 ◽  
Author(s):  
M Watarai ◽  
S Funato ◽  
C Sasakawa

Shigella is a genus of highly adapted bacterial pathogens that cause bacillary dysentery in humans. Bacteria reaching the colon invade intestinal epithelial cells by a process of bacterial-directed endocytosis mediated by the Ipa proteins: IpaB, IpaC, and IpaD of Shigella. The invasion of epithelial cells is thought to be a receptor-mediated phenomenon, although the cellular components of the host that interact with the Ipa proteins have not yet been identified. We report here that in a Shigella flexneri invasive system and Chinese hamster ovary (CHO) cell monolayers, the Ipa proteins were capable of interacting directly with alpha5beta1 integrin. The invasive capacity of S. flexneri for CHO cells increased as levels of alpha5beta1 integrin were elevated. When CHO cells were infected with S. flexneri, the tyrosine phosphorylation both of pp 125FAK, an integrin-regulated 125 K focal adhesion kinase, and of paxillin was stimulated. In contrast, an isogenic strain of S. flexneri that was defective in invasion owing to a mutation in its spa32 gene failed to induce such phosphorylation. Under in vitro and in vivo conditions, the released IpaB, IpaC, and IpaD proteins bound to alpha 5 beta 1 integrin in a manner different from that of soluble fibronectin but similar to that of the tissue form of fibronectin. At the site of attachment of S. flexneri to CHO cells, alpha5beta1 integrin converged with polymerization of actin. These data thus suggest that the capacity of Ipa proteins to interact with alpha5beta1 integrin may be an important Shigella factor in triggering the reorganization of actin cytoskeletons.


2010 ◽  
Vol 94A (1) ◽  
pp. 241-251 ◽  
Author(s):  
Boontharika Chuenjitkuntaworn ◽  
Wipawan Inrung ◽  
Damrong Damrongsri ◽  
Kongkwan Mekaapiruk ◽  
Pitt Supaphol ◽  
...  

1986 ◽  
Vol 251 (5) ◽  
pp. F904-F910 ◽  
Author(s):  
W. R. Adam ◽  
A. P. Koretsky ◽  
M. W. Weiner

Renal intracellular pH (pHi) was measured in vivo from the chemical shift (sigma) of inorganic phosphate (Pi), obtained by 31P-nuclear magnetic resonance spectroscopy (NMR). pH was calculated from the difference between sigma Pi and sigma alpha-ATP. Changes of sigma Pi closely correlated with changes of sigma monophosphoesters; this supports the hypothesis that the pH determined from sigma Pi represents pHi. Renal pH in control rats was 7.39 +/- 0.04 (n = 8). This is higher than pHi of muscle and brain in vivo, suggesting that renal Na-H antiporter activity raises renal pHi. To examine the relationship between renal pH and ammoniagenesis, rats were subjected to acute (less than 24 h) and chronic (4-7 days) metabolic acidosis, acute (20 min) and chronic (6-8 days) respiratory acidosis, and dietary potassium depletion (7-21 days). Acute metabolic and respiratory acidosis produced acidification of renal pHi. Chronic metabolic acidosis (arterial blood pH, 7.26 +/- 0.02) lowered renal pHi to 7.30 +/- 0.02, but chronic respiratory acidosis (arterial blood pH, 7.30 +/- 0.05) was not associated with renal acidosis (pH, 7.40 +/- 0.04). At a similar level of blood pH, pHi was higher in chronic metabolic acidosis than in acute metabolic acidosis, suggesting an adaptive process that raises pHi. Potassium depletion (arterial blood pH, 7.44 +/- 0.05) was associated with a marked renal acidosis (renal pH, 7.17 +/- 0.02). There was a direct relationship between renal pH and cardiac K+. Rapid partial repletion with KCl (1 mmol) significantly increased renal pHi from 7.14 +/- 0.03 to 7.31 +/- 0.01.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 6 (3) ◽  
pp. 906-913 ◽  
Author(s):  
E M Elliott ◽  
G Henderson ◽  
F Sarangi ◽  
V Ling

The genome of Chinese hamster ovary (CHO) cells contains a complex family of approximately 16 alpha-tubulin genes, many of which may be pseudogenes. We present here the complete cDNA sequences of three expressed alpha-tubulin genes; one of these genes has been identified only in CHO cells. The noncoding regions of these three CHO alpha-tubulin genes differed significantly, but their coding regions were highly conserved. Nevertheless, we observed differences in the predicted amino acid sequences for the three genes. A comparison of the CHO alpha-tubulin sequences with all of the sequences available for mammals allowed assignment of the alpha-tubulin genes to three classes. The proteins encoded by the members of two of these classes showed no class-specific amino acids among the mammalian species examined. The gene belonging to the third class encoded an isoprotein which was clearly distinct, and members of this class may play a unique role in vivo. Sequencing of the three alpha-tubulin genes was also undertaken in CMR795, a colcemid-resistant clonal CHO cell line which has previously been shown to have structural and functional alterations in its tubulin proteins. We found differences in the tubulin nucleotide sequence compared with the parental line; however, no differences in the alpha-tubulin proteins encoded in the two cell lines were observed.


2017 ◽  
Vol 114 (44) ◽  
pp. 11775-11780 ◽  
Author(s):  
Karl J. Lewis ◽  
Dorra Frikha-Benayed ◽  
Joyce Louie ◽  
Samuel Stephen ◽  
David C. Spray ◽  
...  

Osteocytes are considered to be the major mechanosensory cells of bone, but how osteocytes in vivo process, perceive, and respond to mechanical loading remains poorly understood. Intracellular calcium (Ca2+) signaling resulting from mechanical stimulation has been widely studied in osteocytes in vitro and in bone explants, but has yet to be examined in vivo. This is achieved herein by using a three-point bending device which is capable of delivering well-defined mechanical loads to metatarsal bones of living mice while simultaneously monitoring the intracellular Ca2+ responses of individual osteocytes by using a genetically encoded fluorescent Ca2+ indicator. Osteocyte responses are imaged by using multiphoton fluorescence microscopy. We investigated the in vivo responses of osteocytes to strains ranging from 250 to 3,000 𝝁ϵ and frequencies from 0.5 to 2 Hz, which are characteristic of physiological conditions reported for bone. At all loading frequencies examined, the number of responding osteocytes increased strongly with applied strain magnitude. However, Ca2+ intensity within responding osteocytes did not change significantly with physiological loading magnitudes. Our studies offer a glimpse into how these critical bone cells respond to mechanical load in vivo, as well as provide a technique to determine how the cells encode magnitude and frequency of loading.


1975 ◽  
Vol 229 (2) ◽  
pp. 344-349 ◽  
Author(s):  
KM Riegle ◽  
RL Clancy

The effect of norepinephrine (NE) on the intracellular hydrogen ion concentration [H+]i of isolated rat hearts perfused with a modified Krebs-Henseleit solution (SHS) was determined. The [H+]i was calculated with the [14C]-dimethyloxazolidinedione method. Respiratory or metabolic acidosis was produced by equilibrating the KHS with 20% C02 or decreasing the [HC03-] of the KHS, respectively. Three types of experiments were carried out: 1) beta blockade--MJ 1999 (Sotalol) was added to the KHS; 2) control--no pharmacological treatment; and 3) NE-norepinephrine was added to the KHS. The effective CO2 buffer values (delta[HC03-]i/deltapHi) during respiratory acidosis were: beta blockade, 11; control, 35; and NE, 84. The production of metabolic acidosis resulted in the following [H+]i changes: beta blockade, 52 mM; control, 60 nM; and NE 7 nM. These results suggest that NE markedly attenuates the changes in [H+]i accompanying respiratory and metabolic acidosis and may account in part for previous observations that the effective C02 buffer value of cardiac muscle in vivo is greater than that in vitro.


Sign in / Sign up

Export Citation Format

Share Document