scholarly journals Chronic renal artery insulin infusion increases mean arterial pressure in male Sprague-Dawley rats

2018 ◽  
Vol 314 (1) ◽  
pp. F81-F88 ◽  
Author(s):  
Debra L. Irsik ◽  
Jian-Kang Chen ◽  
Michael W. Brands

Hyperinsulinemia has been hypothesized to cause hypertension in obesity, type 2 diabetes, and metabolic syndrome through a renal mechanism. However, it has been challenging to isolate renal mechanisms in chronic experimental models due, in part, to technical difficulties. In this study, we tested the hypothesis that a renal mechanism underlies insulin hypertension. We developed a novel technique to permit continuous insulin infusion through the renal artery in conscious rats for 7 days. Mean arterial pressure increased by ~10 mmHg in rats that were infused intravenously (IV) with insulin and glucose. Renal artery doses were 20% of the intravenous doses and did not raise systemic insulin levels or cause differences in blood glucose. The increase in blood pressure was not different from the IV group. Mean arterial pressure did not change in vehicle-infused rats, and there were no differences in renal injury scoring due to the renal artery catheter. Glomerular filtration rate, plasma renin activity, and urinary sodium excretion did not differ between groups at baseline and did not change significantly with insulin infusion. Thus, by developing a novel approach for chronic, continuous renal artery insulin infusion, we provided new evidence that insulin causes hypertension in rats through actions initiated within the kidney.

1990 ◽  
Vol 258 (6) ◽  
pp. R1472-R1478 ◽  
Author(s):  
K. M. Skoog ◽  
M. L. Blair ◽  
C. D. Sladek ◽  
W. M. Williams ◽  
M. L. Mangiapane

Previous studies have indicated that the area postrema (AP) of the rat is necessary for the development of chronic angiotensin-dependent hypertension. The present study assesses the role of the AP in the maintenance of arterial pressure during hemorrhage. Sprague-Dawley rats were given sham or AP lesions 1 wk before the experiment. They were instrumented with femoral arterial and venous catheters 2 days before the experiment. On the day of the experiment, base-line mean arterial pressure (MAP) was measured for 1 h before hemorrhage. During the following 45 min, each rat was subjected to one 7-ml/kg hemorrhage every 15 min for a total of three hemorrhages. MAP was monitored by computerized data acquisition. As shown previously, MAP was slightly but significantly lower in AP-lesion rats compared with sham-lesion rats before the hemorrhage procedure. In AP-lesion rats, hemorrhage resulted in a significantly greater fall in arterial pressure than in sham-lesion rats. In spite of larger drops in pressure in AP-lesion rats, hemorrhage caused equivalent increases in plasma renin and vasopressin in both groups. In AP-lesion rats compared with sham-lesion rats, significant bradycardia was present before hemorrhage. Hemorrhage caused bradycardia in both sham- and AP-lesion rats relative to the prehemorrhage heart rates, but AP-lesion rats showed greater bradycardia than did sham-lesion rats during every time period. We conclude that the AP may play an important role in the defense of arterial pressure against hemorrhage.


1993 ◽  
Vol 136 (2) ◽  
pp. 283-288 ◽  
Author(s):  
C. P. Smith ◽  
R. J. Balment

ABSTRACT The present study was undertaken to determine the involvement of the two established vasopressin receptor subtypes (V1 and V2) in arginine vasopressin (AVP)-induced natriuresis and also to determine whether changes in mean arterial pressure (MAP) and/or the renally active hormones atrial natriuretic peptide (ANP), angiotensin II (AII) and aldosterone are a prerequisite for the expression of AVP-induced natriuresis. In Sprague–Dawley rats which were anaesthetized with Inactin (5-ethyl-5-(1′-methylpropyl)-2-thiobarbiturate) and infused with 0·077 mol NaCl/l, infusion of 63 fmol AVP/min was found to be natriuretic whereas an approximately equipotent dose of the specific V2 agonist [deamino-cis1, d-Arg8]-vasopressin (dDAVP) did not induce natriuresis. The specific V1 antagonist [β-mercapto-β,β-cyclopenta-methylene-propionyl1, O-Me-Tyr2, Arg8]-vasopressin when administered prior to infusion of 63 fmol AVP/min did not inhibit AVP-induced natriuresis. AVP-induced natriuresis was not accompanied by changes in MAP or in the plasma concentrations of the renally active hormones ANP, AII or aldosterone. These results suggest that neither the V1 nor the V2 receptor subtypes are involved in AVP-induced natriuresis. In addition, it was found that changes in MAP, plasma ANP, All or aldosterone concentrations were not a prerequisite for AVP-induced natriuresis. Journal of Endocrinology (1993) 136, 283–288


1990 ◽  
Vol 259 (3) ◽  
pp. E432
Author(s):  
C J Weaver ◽  
M D Johnson

Reduction of renal perfusion is followed by increases in plasma renin activity (PRA) and arterial pressure. The present experiments were designed to determine if an opiate antagonist would alter pressor or renin responses to acute reduction of renal arterial pressure (RAP) in anesthetized rats. Male Sprague-Dawley rats were anesthetized with Inactin, and an adjustable constrictor device was placed around the abdominal aorta proximal to the renal arteries. One-half of the animals were pretreated with the opiate antagonist naloxone (2 mg/kg iv), and the other one-half were pretreated with saline vehicle. The abdominal aorta was then constricted to reduce RAP by 25% (measured as femoral arterial pressure) in one-half of the animals in each pretreatment group. Compared with vehicle pretreatment, naloxone pretreatment did not alter the PRA response to aortic constriction; however, naloxone did attenuate the pressor response. We conclude that 1) the PRA response to acute reduction of renal arterial pressure is not dependent on an opiate mechanism in the rat, and 2) attenuation of the pressor response to aortic constriction by naloxone in intact rats is not secondary to a suppression of the PRA response.


1992 ◽  
Vol 263 (6) ◽  
pp. R1265-R1270 ◽  
Author(s):  
K. A. Trostel ◽  
J. W. Osborn

Previous studies have demonstrated that renal nerve activity has acute effects on renal function in rats with cervical spinal cord transection (CST). The present study tested the hypothesis that renal nerves chronically influence renal and cardiovascular function in CST rats. Three groups of conscious Sprague-Dawley rats were studied: renal denervated plus CST (RDNX + CST), sham RDNX plus CST (sham + CST), and sham RDNX plus sham CST (intact). CST or sham CST surgeries were performed 8 days after RDNX or sham RDNX. Sodium and water intakes were fixed by intravenous infusion. Mean arterial pressure (MAP) and plasma renin activity (PRA) were measured before and for 9 days after CST/sham CST. In addition, urine flow, urinary sodium excretion, and urine pH were measured in the two groups of CST rats. One day after CST, MAP decreased approximately 25 mmHg in both RDNX + CST and sham + CST groups. PRA had fallen approximately 50% 1 day after CST and was not different between CST groups. PRA remained depressed throughout the study. There were no differences between sham + CST and RDNX + CST rats in any of the renal or cardiovascular variables measured after CST. In summary, we found no evidence for a chronic effect of renal nerves on renal function or arterial pressure in CST rats.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Brandon A Kemp ◽  
John J Gildea ◽  
Nancy L Howell ◽  
Susanna R Keller ◽  
Robert M Carey

Previous studies from our laboratory have shown that extracellular renal interstitial (RI) cyclic guanosine 3’5’-monophosphate (cGMP) increases urine sodium (Na + ) excretion (U Na V) at the renal proximal tubule (RPT) in rats via activation of Src family kinase. Extracellular cGMP engenders this response through an unknown receptor. We hypothesized that cGMP binds to the extracellular domain of Na + /K + -ATPase (NKA) on basolateral membranes of RPT cells inhibiting Na + transport. In the present study, we evaluated the effect of RI infusion of rostafuroxin (RF), a digitoxigenin derivative that specifically displaces oubain (OUA) binding from NKA, on U Na V in the presence of RI cGMP infusion. Volume expanded, uninephrectomized, 12-week-old female Sprague-Dawley rats received RI infusions of vehicle (D 5 W) (N=8), RI cGMP (18, 36, and 72 μg/kg/min; each dose for 30 min; N=10), or RI cGMP + RF (0.012 μg/kg/min; N=5) for 90 min following a 30 min control period with RI infusion of vehicle D 5 W. RI cGMP infusion induced a significant natriuresis from 0.39 ± 0.06 μmol/min to 1.03 ± 0.21 (P<0.05), 1.17 ± 0.19 (P<0.01), and 1.94 ± 0.16 (P<0.001) μmol/min at 18, 36, and 72 μg/kg/min cGMP, respectively. RI co-infusion of cGMP + RF abolished the cGMP-induced natriuresis at all doses (F=16.05, P<0.001). There was no change in mean arterial pressure during any infusion. To further demonstrate that cGMP binds to NKA, we performed a series of competitive binding studies in isolated RPTs from normal rat kidneys (N=4 for each) with bodipy-OUA (2 μM) + cGMP (10 μM) and 8-[Biotin]-AET-cGMP (2 μM) + OUA (10 μM). In the presence of cGMP, bodipy-OUA fluorescence intensity was reduced from 1422.1 ± 63 to 1072.5 ± 64 relative fluorescent units (RFU, P<0.01). In the presence of OUA, 8-[Biotin]-AET-cGMP staining was reduced from 1916.3 ± 144 to 1492.2 ± 84 RFU (P<0.05). Serving as control, biotinylated cAMP (N=2) did not demonstrate any fluorescence above background. Together, these data suggest that cGMP may compete with RF for binding on NKA and that the extracellular domain of NKA may serve as the receptor for cGMP-induced natriuresis.


2000 ◽  
Vol 11 (10) ◽  
pp. 1813-1818
Author(s):  
PIETER VAN PAASSEN ◽  
DICK DE ZEEUW ◽  
PAUL E. DE JONG ◽  
GERJAN NAVIS

Abstract. Pressure natriuresis (PN), i.e., a rise in renal sodium excretion in response to a higher BP, is involved in long-term BP regulation. PN is blunted in essential hypertension, but the mechanism is unknown. This study assessed the role of the renin-angiotensin-aldosterone system (RAAS) in PN in eight essential hypertensive men from the individual correlations between spontaneous fluctuations in BP and time corresponding changes in sodium excretion (collected at 2- and 4-h intervals for 48 h), during strict sodium balance, without treatment, and during renin inhibition (remikiren, 600 mg oral compound). Without treatment, daily values for mean arterial pressure were 109.5 ± 1.9 and 107 ± 1.9 mmHg, for urinary sodium excretion were 37.2 ± 2.8 and 42.0 ± 2.8 mmol/24 h, and for plasma renin activity were 2.34 ± 0.48 and 2.23 ± 0.44 nmol/L per h, respectively, for two consecutive days. During remikiren treatment, mean arterial pressure was 101.9 ± 1.7 and 100.8 ± 1.7 mmHg (P < 0.05, versus baseline). Urinary sodium excretion was 39.3 ± 3.7 and 45.2 ± 5.3 mmol/24 h (not significant versus baseline), and plasma renin activity was 0.79 ± 0.11 and 0.82 ± 0.13 nmol/L per h (P < 0.05 versus baseline). During remikiren treatment, BP correlated positively with sodium excretion in all patients but in only three of eight patients without treatment. The slope of the regression equation was steeper during remikiren treatment in seven of eight patients. Thus, the relationship between BP and natriuresis was more readily apparent during RAAS blockade, suggesting that RAAS activity blunts PN in hypertensive patients. Improved PN may contribute to the hypotensive effect of RAAS blockade and to maintenance of sodium balance at a lower BP level without volume expansion.


2018 ◽  
Vol 315 (3) ◽  
pp. R529-R538 ◽  
Author(s):  
Tyler Soncrant ◽  
Dragana Komnenov ◽  
William H. Beierwaltes ◽  
Haiping Chen ◽  
Min Wu ◽  
...  

Consumption of food high in fructose is prevalent in modern diets. One week of moderately high fructose intake combined with high salt diet has been shown to increase blood pressure and failed to suppress plasma renin activity (PRA). We tested the hypothesis that the hypertension and high PRA are consequences of elevated renal sympathetic nerve activity (RSNA). In protocol 1, we assessed RSNA by telemetry in conscious Sprague-Dawley rats given 20% fructose or 20% glucose in drinking water on a 0.4% NaCl diet (NS) for 1 wk and then transitioned to a 4% NaCl diet (HS). After an additional week, mean arterial pressure (MAP) and RSNA increased significantly in fructose-fed but not glucose-fed HS rats. In protocol 2, fructose (Fruc)- or glucose (Glu)-fed rats on NS or HS diet for 3 wk underwent sham denervation (shamDNX) or bilateral renal denervation using cryoablation (cryoDNX). MAP was higher in Fruc-HS rats compared with Glu-NS, Glu-HS, or Fruc-NS rats and decreased after cryoDNX ( P < 0.01). MAP did not change in Fruc-HS shamDNX rats. Renal norepinephrine content decreased by 85% in cryoDNX ( P < 0.01 vs. shamDNX). PRA significantly decreased after cryoDNX in both Fruc-NS and Fruc-HS rats. Nonfasting blood glucose levels were similar among the four groups. Glucose-to-insulin ratio significantly increased in Fruc-HS cryoDNX rats, consistent with greater insulin sensitivity. Taken together, these studies show that renal sympathoexcitation is, at least in part, responsible for salt-dependent increases in MAP, increased PRA, and decreased insulin sensitivity in rats fed a moderately high fructose diet for as little as 3 wk.


1981 ◽  
Vol 240 (6) ◽  
pp. H862-H867 ◽  
Author(s):  
J. A. Johnson ◽  
S. Ichikawa ◽  
K. D. Kurz ◽  
W. L. Fowler ◽  
C. G. Payne

One-kidney rabbits were subjected to renal artery stenosis, and acute experiments were performed 3 days later on conscious animals; one-kidney rabbits without renal artery stenosis served as controls. Rabbits with 3-day renal artery stenosis were normotensive and had normal values for plasma renin activity. Intravenous infusion of arginine vasopressin at 5 mU.min-1.kg body wt-1 for 5 min resulted in a significantly (P less than 0.01) greater increase in mean arterial pressure and total peripheral resistance (TPR) in the renal artery stenosis rabbits than in the controls. Infusion of the angiotensin II (AII) competitive antagonist, [Sar1, Ile8]AII, before the vasopressin infusion abolished the hyperresponsiveness to vasopressin in the renal artery stenosis rabbits and resulted in changes in mean arterial pressure and TPR that were approximately of the same magnitude as the controls. Infusion of [SAr1, Ile8]AII before vasopressin infusion in control rabbits did not alter the cardiovascular responses to vasopressin. Because previous studies have shown that 3-day renal artery stenosis rabbits have exaggerated pressor responses to norepinephrine and that this hyperresponsiveness to norepinephrine is blocked by [Sar1, Ile8]-AII, the present study with vasopressin provided evidence that the increased responsiveness in this model is not specific for a single pressor agent. These studies also demonstrated that AII plays an important role in mediating the exaggerated pressor responses to vasopressin in this prehypertensive model.


2006 ◽  
Vol 100 (3) ◽  
pp. 1019-1026 ◽  
Author(s):  
Brad J. Behnke ◽  
Danielle J. Padilla ◽  
Leonardo F. Ferreira ◽  
Michael D. Delp ◽  
Timothy I. Musch ◽  
...  

In healthy animals under normotensive conditions (N), contracting skeletal muscle perfusion is regulated to maintain microvascular O2 pressures (Pmv[Formula: see text]) at levels commensurate with O2 demands. Hypovolemic hypotension (H) impairs muscle contractile function; we tested whether this condition would alter the matching of O2 delivery (Q̇o2) to O2 utilization (V̇o2), as determined by Pmv[Formula: see text] at the onset ofmuscle contractions. Pmv[Formula: see text] in the spinotrapezius muscles of seven female Sprague-Dawley rats (280 ± 6 g) was measured every 2 s across the transition from rest to 1-Hz twitch contractions. Measurements were made under N (mean arterial pressure, 97 ± 4 mmHg) and H (induced by arterial section; mean arterial pressure, 58 ± 3 mmHg, P < 0.05) conditions; Pmv[Formula: see text] profiles were modeled using a multicomponent exponential fitted with independent time delays. Hypotension reduced muscle blood flow at rest (24 ± 8 vs. 6 ± 1 ml−1·min−1·100 g−1 for N and H, respectively; P < 0.05) and during contractions (74 ± 20 vs. 22 ± 4 ml−1·min−1·100 g−1 for N and H, respectively; P < 0.05). H significantly decreased resting Pmv[Formula: see text] and steady-state contracting Pmv[Formula: see text](19.4 ± 2.4 vs. 8.7 ± 1.6 Torr for N and H, respectively, P < 0.05). At the onset of contractions, H reduced the time delay (11.8 ± 1.7 vs. 5.9 ± 0.9 s for N andH, respectively, P < 0.05) before the fall in Pmv[Formula: see text] and accelerated therate of Pmv[Formula: see text] decrease (time constant, 12.6 ± 1.4 vs. 7.3 ± 0.9 s for N and H, respectively, P < 0.05). Muscle V̇o2 was reduced by 71% at rest and 64% with contractions in H vs. N, and O2 extraction during H averaged 78% at rest and 94% during contractions vs. 51 and 78% in N. These results demonstrate that H constrains the increase of skeletal muscle Q̇o2 relative to that of V̇o2 at the onset of contractions,leading to a decreased Pmv[Formula: see text]. According to Fick's law, this scenario will decrease blood-myocyte O2 flux, thereby slowing V̇o2 kinetics and exacerbating the O2 deficit generated at exercise onset.


Sign in / Sign up

Export Citation Format

Share Document